第七章 連續機率分配.

Slides:



Advertisements
Similar presentations
Chapter Four Parameter Estimation and Statistical Inference.
Advertisements

McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
第07章 計量值管制圖.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
Chapter Two Data Summary and Presentation. Statistics II2 敘述統計 Vs. 推論統計 n 敘述統計 : 使用分析方法或圖形來描述一組來自於母 體或樣本之資料 n 推論統計 : 利用抽樣方法取得一樣本, 並針對此樣本 計算樣本統計量, 以推論未之母體之參數.
Advanced Chemical Engineering Thermodynamics
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容: 質化的及有限的因變數模型 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
Section 2.3 Least-Squares Regression 最小平方迴歸
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 質化的及有限的因變數模型 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
平均值檢定 假設 檢定 One Sample 平均值 是否為 u. One Sample—1 工廠甲過去向 A 公司購買原料, 平均交貨日約為 4.94 日, 標準差 現在 A 公司改組, 甲工廠繼續向 A 公司 購買, 隨機抽取 8 次採購, 平均日數為 4.29 日, 請問 A 公.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
第二章 統計圖表.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
: The Playboy Chimp ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10611: The Playboy Chimp 解題者:蔡昇宇 解題日期: 2010 年 2 月 28 日 題意:給一已排序的數列 S( 升冪.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
信度.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
BEM 特論 - 第一次討論 指導教授 : 陳正宗 終身特聘教授 指導學長 : 高聖凱、謝祥志、林羿州 學生 : 吳建鋒 日期 :2015/6/16 Fundamental Solution Green’s Function Green’s Theorem.
1 結合 Hull-White 模型與求面積法 評價雪球型債劵 報告者 : 顏妤芳. 2 大綱 簡介雪球型債劵契約 研究方法 評價雪球型債劵 -第一步驟:計算各節點的最大最小可能債息 -第二步驟:考慮票面利率不得低於 0% -第三步驟:計算債劵現值及考慮贖回條款.
Ch05 確定研究變項.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 企業質化決策之應用與分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
Monte Carlo Simulation Part.1 Dept. Phys., Tunghai Univ. Numerical Methods, C. T. Shih.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
機率與分配 樣本空間與機率定義 機率的定義 機率的基本定理 隨機變數(Random Variable) 期望值與變異數 常用的機率分配.
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
1 Excel 講授內容 ( 進階 ) 授課教師 : 吳槐桂 最後更新 : 2008/05/01.
社會統計 第三講 機率、常態分配與抽樣分配 ©Ming-chi Chen 社會統計.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
觀測量的權 權的觀念與計算.
變異數分析 迴歸分析 因素分析 區別分析 集區分析
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
介紹不同坐標系之間的轉換 以LS平差方式求解坐標轉換參數
Chapter 10 m-way 搜尋樹與B-Tree
C7_prob_2 1 Chap 7 機率論 隨機變數 (random variable) :一群數量的 代表,它們的值是由機會決定的,通常以 大寫英文字母表示 隨機變數分為離散型與連續型兩種。 機率分布 (probability distribution) : 描述 隨機變數值的機率變化 離散型變數的分布直接以.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
第03章 基本統計原理 品質管理 六標準差式.
如何建立檔案 中國醫藥大學 公衛系 梁文敏 副教授 TEL:
第十二章 變異數分析 12.1 單因子變異數分析 1-way ANOVA Subject : 比較三組以上的母體平均數 k 組資料,母體平均數為 μ 1, …, μ i, …, μ k Data : k 組資料,樣本數為 n 1,…, n k. x ij --- 第 i 組的第 j 個觀察值 N =
Chapter 6 Probability & The Normal Distribution
Ch10 運用態度量表蒐集資料.
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
連續隨機變數 連續變數:時間、分數、重量、……
Ch05 確定研究變項.
第五章IIR數位濾波器設計 濾波器的功能乃對於數位信號進行處理﹐ 以滿足系統的需求規格。其作法為設計一 個系統的轉移函數﹐或者差分方程式﹐使 其頻率響應落在規格的範圍內。本章探討 的是其中一種方法﹐稱為Infinite impulse register(IIR)。 IIR架構說明。 各種不同頻帶(Band)濾波器的設計方法。
計數值抽樣計劃 使用 MIL-105D 表. 表 10-1 Sample Sizes Code Letters.
財務管理概論 劉亞秋‧薛立言 合著 (東華書局, 2007)
第二章 導 數 課程目標 變化率與切線 導數的定義 基本的微分方法 邊際分析 乘法與除法規則 連鎖律 高階導數 不可微的函數.
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
取樣 3.1 量化 3.2 向量量化 第1頁第1頁 3.1 取樣  數位影像:  數位影像:在空間座標和亮度都離散化的影像  取樣:  取樣:取不同空間位置的函數 ( 灰階 ) 值當樣本  量化:  量化:用一組整數值來表示這些樣本.
Ch 8 實習.
Chapter 5 Expectations 主講人:虞台文.
Presentation transcript:

第七章 連續機率分配

本章重點 連續型隨機變數 機率密度函數 常用之連續型機率分配 常態分配 二項分配 vs. 常態分配

離散型隨機變數的機率分配 x 1 3 5 7 加總 f(x) 1/16 3/16 5/16 7/16 f(x) 7/16 = f(7) = P(X=7) 1 3 5 7 x

連續型隨機變數 資料尺度 區間尺度 比例尺度 特性 不可數 在任一區間有無數多個數值(樣本點為緊密連接) 任何一點的機率為零

資料個數很大 組距很小 相對次數直方圖 機率曲線

機率密度函數 p.d.f ( probability density function)

f(x) 之意義 特別注意*** 0≦f(x) ≦ ∞ f(c) ≠P(X=c)=0 機率 = 機率密度函數曲線的某一區間之面積

面積 = P(1/4 < X < 1/3) =? f(x) f(x)=2 2 f(1/4)=2 f(1/3)=2 1/2 x 1/2 x 1/4 1/3

連續型隨機變數的機率分配 f(x)=x/24 f(x) 面積 = P(3<X<5)=P(3≦X<5)=P(3<X≦5) 7/24 = f(7) ≠ P(X=7) = 0 f(x)=x/24 x 1 3 5 7

機率分配函數f(x)代表高度 離散型隨機變數 連續型隨機變數 機率 P(X=a) = f(a)=高度 機率 P(X=a) = 0 機率 P(a<X<b)=面積

常態分配(高斯分配) 設 X 為連續隨機變數,若其 p.d.f. 為: 則稱此 f(x) 為常態分配;表示為:

常態分配的特質

常態分配圖 f(x) x

平均數相同、標準差不同 f(x) x

平均數不同、標準差相同 f(x) x

常態分配的機率範圍

X Z 2 3 4 5 6 -1.4142 -0.7071 0.7071 1.4142

標準化常態分配

標準化 標準化 標準化

標準常態機率分配表

標準常態分配圖 f(z) Z = 0.54 0.2054 - a b z

P( -∞ < Z < 0) = P( 0 < Z < ∞) = 0.5 P(- a < Z < 0 ) = P( 0 < Z < a) P(-a<Z<b) = P(-a<Z<0) + P(0<Z<b) = P(0<Z<a) + P(0<Z<b) P( 0 < Z < a ) = P( 0 < Z ≦a )

利用標準常態分配求常態分配的機率 Z~N(0, 1)

利用標準常態分配求常態分配的機率 Step 1: 平移 ( X – μ) f(x) a-μ b -μ a b

利用標準常態分配求常態分配的機率 Step 2: 推擠 ( X – μ) / σ f(x) a-μ b -μ

二項分配與常態分配 X ~ b (n, p) 連續性調整