Error Estimation in TV Imaging Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center.

Slides:



Advertisements
Similar presentations
An Active contour Model without Edges
Advertisements

Istituto per le Applicazioni del Calcolo "M. Picone" Multigrid Computation for Variational Image Segmentation Problems: Euler equations and approximation.
Total Variation and Geometric Regularization for Inverse Problems
A Transform-based Variational Framework Guy Gilboa Pixel Club, November, 2013.
Johann Radon Institute for Computational and Applied Mathematics: 1/25 Signal- und Bildverarbeitung, Image Analysis and Processing.
Object Specific Compressed Sensing by minimizing a weighted L2-norm A. Mahalanobis.
Various Regularization Methods in Computer Vision Min-Gyu Park Computer Vision Lab. School of Information and Communications GIST.
L1 sparse reconstruction of sharp point set surfaces
TVL1 Models for Imaging: Global Optimization & Geometric Properties Part I Tony F. Chan Math Dept, UCLA S. Esedoglu Math Dept, Univ. Michigan Other Collaborators:
Bregman Iterative Algorithms for L1 Minimization with
Level set based Image Segmentation Hang Xiao Jan12, 2013.
Active Contours, Level Sets, and Image Segmentation
2013 SIAM Great Lakes Section From PDEs to Information Science and Back Russel Caflisch IPAM Mathematics Department, UCLA 1.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods Segmentation.
Introduction to Variational Methods and Applications
Medical Image Segmentation: Beyond Level Sets (Ismail’s part) 1.
Martin Burger Total Variation 1 Cetraro, September 2008 Variational Methods and their Analysis Questions: - Existence - Uniqueness - Optimality conditions.
1 12. Principles of Parameter Estimation The purpose of this lecture is to illustrate the usefulness of the various concepts introduced and studied in.
Exact or stable image\signal reconstruction from incomplete information Project guide: Dr. Pradeep Sen UNM (Abq) Submitted by: Nitesh Agarwal IIT Roorkee.
EARS1160 – Numerical Methods notes by G. Houseman
Image Segmentation some examples Zhiqiang wang
Yves Meyer’s models for image decomposition and computational approaches Luminita Vese Department of Mathematics, UCLA Triet Le (Yale University), Linh.
Contours and Optical Flow: Cues for Capturing Human Motion in Videos Thomas Brox Computer Vision and Pattern Recognition Group University of Bonn Research.
Deformable Contours Dr. E. Ribeiro.
Inverse Problems in Semiconductor Devices Martin Burger Johannes Kepler Universität Linz.
Martin Burger Institut für Numerische und Angewandte Mathematik CeNoS Level set methods for imaging and application to MRI segmentation.
ICG Professor Horst Cerjak, Thomas Pock Variational Methods for 3D Reconstruction Thomas Pock 1, Chrisopher Zach 2 and Horst Bischof 1 1 Institute.
Front propagation in inverse problems and imaging Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and Related Methods II.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods: Error.
Econ Prof. Buckles1 Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u 1. Estimation.
1 Total variation minimization Numerical Analysis, Error Estimation, and Extensions Martin Burger Johannes Kepler University Linz SFB Numerical-Symbolic-Geometric.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Quantitative Molecular Imaging – A Mathematical.
Regularization with Singular Energies Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI)
Preconditioned Level Set Flows Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center.
Segmentation Divide the image into segments. Each segment:
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods Numerical.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and Related Methods.
1 Regularization with Singular Energies: Error Estimation and Numerics Martin Burger Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms.
Background vs. foreground segmentation of video sequences = +
Comp 775: Deformable models: snakes and active contours Marc Niethammer, Stephen Pizer Department of Computer Science University of North Carolina, Chapel.
Fast Optimal Design of Semiconductor Devices Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging.
Optical Flow Estimation using Variational Techniques Darya Frolova.
1 Regularisierung mir Singulären Energien Martin Burger Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms Universität Münster
Martin Burger Total Variation 1 Cetraro, September 2008 Numerical Schemes Wrap up approximate formulations of subgradient relation.
EE565 Advanced Image Processing Copyright Xin Li Different Frameworks for Image Processing Statistical/Stochastic Models: Wiener’s MMSE estimation.
1 Level Sets for Inverse Problems and Optimization I Martin Burger Johannes Kepler University Linz SFB Numerical-Symbolic-Geometric Scientific Computing.
Maximum likelihood (ML)
Classification and Prediction: Regression Analysis
Motivation from Real-World Applications EE565 Advanced Image Processing Copyright Xin Li Noisy Photos Noisy ultrasound data.
Evolving Curves/Surfaces for Geometric Reconstruction and Image Segmentation Huaiping Yang (Joint work with Bert Juettler) Johannes Kepler University of.
Adaptive Regularization of the NL-Means : Application to Image and Video Denoising IEEE TRANSACTION ON IMAGE PROCESSING , VOL , 23 , NO,8 , AUGUST 2014.
7.1. Mean Shift Segmentation Idea of mean shift:
Stochastic Linear Programming by Series of Monte-Carlo Estimators Leonidas SAKALAUSKAS Institute of Mathematics&Informatics Vilnius, Lithuania
Probabilistic Graphical Models
1 Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u.
Ch 4. Linear Models for Classification (1/2) Pattern Recognition and Machine Learning, C. M. Bishop, Summarized and revised by Hee-Woong Lim.
Introduction to Level Set Methods: Part II
Math 3360: Mathematical Imaging Prof. Ronald Lok Ming Lui Department of Mathematics, The Chinese University of Hong Kong Lecture 11: Types of noises.
July 11, 2006Bayesian Inference and Maximum Entropy Probing the covariance matrix Kenneth M. Hanson T-16, Nuclear Physics; Theoretical Division Los.
1  The Problem: Consider a two class task with ω 1, ω 2   LINEAR CLASSIFIERS.
1 Enclosing Ellipsoids of Semi-algebraic Sets and Error Bounds in Polynomial Optimization Makoto Yamashita Masakazu Kojima Tokyo Institute of Technology.
1 Prof. Dr. Rainer Stachuletz Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u 1. Estimation.
Ch.8 Efficient Coding of Visual Scenes by Grouping and Segmentation Bayesian Brain Tai Sing Lee and Alan L. Yuille Heo, Min-Oh.
CS 641 Term project Level-set based segmentation algorithms Presented by- Karthik Alavala (under the guidance of Dr. Jundong Liu)
Instructor: Mircea Nicolescu Lecture 7
Using Neumann Series to Solve Inverse Problems in Imaging Christopher Kumar Anand.
Introduction to Medical Imaging Week 6: Introduction to Medical Imaging Week 6: Denoising (part II) – Variational Methods and Evolutions Guy Gilboa Course.
PDE Methods for Image Restoration
Expectation-Maximization & Belief Propagation
Presentation transcript:

Error Estimation in TV Imaging Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center for Nonlinear Science (CeNoS) Westfälische Wilhelms-Universität Münster

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Stan Osher (UCLA) mb-Osher, Inverse Problems 04 Elena Resmerita, Lin He (Linz) mb-Resmerita-He, Computing 07 Joint Work with

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Total variation methods are one of the most popular techniques in modern imaging Basic idea is to model image, resp. their main structure (cartoon) as functions of bounded variation Reconstructions seek images of as small total variation as possible TV Imaging

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Total variation is a convex, but not differentiable and not strictly convex functional „ “ Banach space BV consisting of all L 1 functions of bounded variation TV Imaging j u j BV = Z j r u j d x j u j BV = sup g 2 C 1 0 ; k g k 1 · 1 Z u ( r ¢ g ) d x

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 ROF model Rudin-Osher Fatemi 89/92, Chambolle-Lions 96, Scherzer-Dobson 96, Meyer 01,… TV flow Caselles et al 99-06, Feng-Prohl 03,.. Denoising Models u ( t = 0 ) = f ¸ 2 Z ( u ¡ f ) 2 + j u j TV ! m i n u 2 t u = r ¢ ( r u j r u j ) 2 j u j TV

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Optimality condition for ROF denoising Dual variable p enters in ROF and TV flow – related to mean curvature of edges for total variation Subdifferential of convex functional ROF J ( u ) = f p 2 X ¤ j 8 v 2 X : J ( u ) + h p ; v ¡ u i · J ( v )g p + ¸ u = ¸f ; p j u j TV

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 ROF Model Reconstruction (code by Jinjun Xu) cleannoisy ROF

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 ROF model denoises cartoon images resp. computes the cartoon of an arbitrary image, natural spatial multi-scale decomposition by varying ROF Model

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 First question for error estimation: estimate difference of u (minimizer of ROF) and f in terms of Estimate in the L 2 norm is standard, but does not yield information about edges Estimate in the BV-norm too ambitious: even arbitrarily small difference in edge location can yield BV-norm of order one ! Error Estimation ?

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 We need a better error measure, stronger than L 2, weaker than BV Possible choice: Bregman distance Bregman 67 Real distance for a strictly convex differentiable functional – not symmetric Symmetric version Error Measure D J ( u ; v ) = J ( u ) - J ( v ) - h J 0 ( v ) ; u-v i d J ( u ; v ) = D J ( u ; v ) + D J ( v ; u ) = h J 0 ( u ) - J 0 ( v ) ; u-v i

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Bregman distances reduce to known measures for standard energies Example 1: Subgradient = Gradient = u Bregman distance becomes Bregman Distance J ( u ) = 1 2 k u k 2 D J ( u ; v ) = 1 2 k u ¡ v k 2

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Example 2: Subgradient = Gradient = log u Bregman distance becomes Kullback-Leibler divergence (relative Entropy) Bregman Distance D J ( u ; v ) = Z u l og u v + Z ( v ¡ u ) J ( u ) = Z u l ogu- Z u

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Total variation is neither symmetric nor differentiable Define generalized Bregman distance for each subgradient Symmetric version Kiwiel 97, Chen-Teboulle 97 Bregman Distance D p J ( u ; v ) = J ( u ) - J ( v ) - h p ; u-v i p J ( v ) d J ( u ; v ) = h p u -p v ; u-v i

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 For energies homogeneous of degree one, we have Bregman distance becomes Bregman Distance J ( v ) = h p ; v i ; p J ( v ) D p J ( u ; v ) = J ( u ) - h p ; v i ; p J ( v )

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Bregman distance for total variation is not a strict distance, can be zero for In particular d TV is zero for contrast change Resmerita-Scherzer 06 Bregman distance is still not negative (convexity) Bregman distance can provide information about edges Bregman Distance d TV ( u ; f ( u )) = 0 u 6 = v

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 For estimate in terms of we need smoothness condition on data Optimality condition for ROF Error Estimation q j f j TV \ L 2 ( ­ ) p + ¸ u = ¸f ; p j u j TV p-q + ¸ ( u- f ) = -q

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Apply to u – v Estimate for Bregman distance, mb-Osher 04 Error Estimation d TV ( u ; f ) = h p-q ; u- f i · k q k 2 4 ¸ = O ( ¸ ¡ 1 ) h ¸ ( u- f ) + p-q ; u- f i = h q ; f ¡ u i · k q k 2 4 ¸ + ¸ k u ¡ f k 2

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 In practice we have to deal with noisy data f (perturbation of some exact data g) Analogous estimate for Bregman distance Optimal choice of the parameter i.e. of the order of the noise variance Error Estimation d TV ( u ; f ) = h p-q ; u- f i · k q k 2 4 ¸ + ¸ 2 k f -g k 2 ¸ ¡ 1 » k g- f k q j g j TV \ L 2 ( ­ )

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Analogous estimate for TV flow mb-Resmerita-He 07 Regularization parameter is stopping time T of the flow T ~ -1 Note: all estimates multivalued ! Hold for any subgradient satisfying Error Estimation q j g j TV \ L 2 ( ­ )

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Let g be piecewise constant with white background and color values c i on regions  i Then we obtain subgradients of the form with signed distance function d i and  s.t. Interpretation q ² = r ¢ ( Ã ² ( d i ) r d i ) 0 · Ã ² · 1 ; Ã ² ( 0 ) = 1 supp ( Ã ² ) ½ ( ¡ ² ; ² )

Error Estimation in TV ImagingICIAM 07, Zürich, July 07  chosen smaller than distance between two region boundaries Note: on the region boundary (d i = 0) subgradient equals mean curvature of edge Interpretation q ² = r ¢ ( Ã ² ( d i ) r d i ) = Ã ² ( 0 ) ¢ d i + ( Ã ² ) 0 ( 0 )j r d i j 2 = ¢ d i

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Bregman distances given by If we only take the sup over those g with and let  tend to zero we obtain Interpretation D q ² TV ( u ; g ) = sup k q k 1 · 1 Z u r ¢ ( q- Ã ² ( d i ) r d i ) q = r d i ­ i l i m i n f ² D q ² TV ( u ; g ) ¸ j u j TV ( ­ n ­ i )

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Multivalued error estimates imply quantitative estimate for total variation of u away from the discontinuity set of g Other geometric estimates possible by different choice of subgradients, different limits Interpretation

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Direct extension to deconvolution / linear inverse problems: A linear operator under standard source condition mb-Osher 04 Nonlinear problems Resmerita-Scherzer 06, Hofmann-Kaltenbacher-Pöschl-Scherzer 07 Extensions ¸ 2 k A u ¡ f k 2 + j u j TV ! m i n u 2 BV q = A ¤ w j g j TV

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Stronger estimates under stronger conditions Resmerita 05 Numerical analysis for appropriate discretizations (correct discretization of subgradient crucial) mb 07 Extensions

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Extension to other fitting functionals (relative entropy, log-likelihood functionals for different noise models) Extension to anisotropic TV (Interpretation of subgradients) Extension to geometric problems (segmentation by Chan-Vese, Mumford- Shah): use exact relaxation in BV with bound constraints Chan-Esedoglu-Nikolova 04 Future Tasks

Error Estimation in TV ImagingICIAM 07, Zürich, July 07 Papers and talks at Download and Contact