1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.

Slides:



Advertisements
Similar presentations
Pertemuan 03 Teori Peluang (Probabilitas)
Advertisements

1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Copyright ©2005 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Chapter 4 Probability and Probability Distributions
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Chapter 5 Probability Distributions. E.g., X is the number of heads obtained in 3 tosses of a coin. [X=0] = {TTT} [X=1] = {HTT, THT, TTH} [X=2] = {HHT,
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 06 Kejadian Bebas dan Bersyarat Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 03 Ukuran Pemusatan dan Lokasi Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 05 Ruang Contoh dan Peluang Matakuliah: I0134 –Metode Statistika Tahun: 2007.
1 Pertemuan 04 Ukuran Simpangan dan Variabilitas Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 04 Peubah Acak dan Sebaran Peluang Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 02 Penyajian Data dan Distribusi Frekuensi Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Introduction to Probability and Statistics Chapter 4 Probability and Probability Distributions.
Copyright ©2011 Nelson Education Limited. Probability and Probability Distributions CHAPTER 4 Part 2.
14/6/1435 lecture 10 Lecture 9. The probability distribution for the discrete variable Satify the following conditions P(x)>= 0 for all x.
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
Chapter 6 Random Variables
5.3 Random Variables  Random Variable  Discrete Random Variables  Continuous Random Variables  Normal Distributions as Probability Distributions 1.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables.
1 MATB344 Applied Statistics Chapter 4 Probability and Probability Distributions.
Probability Distributions
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Sebaran Binomial dan Poisson Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Conditional Probability 423/what-is-your-favorite-data-analysis-cartoon 1.
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
MATB344 Applied Statistics
CHAPTER 6 Random Variables
Peubah Acak Diskrit Pertemuan 07
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Probability and Discrete Probability Distributions
Random Variables.
PROBABILITY AND PROBABILITY RULES
Chapter 6: Random Variables
UNIT 8 Discrete Probability Distributions
Discrete and Continuous Random Variables
Pertemuan 13 Sebaran Seragam dan Eksponensial
Aim – How do we analyze a Discrete Random Variable?
CHAPTER 6 Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Warmup Consider tossing a fair coin 3 times.
CHAPTER 6 Random Variables
12/6/ Discrete and Continuous Random Variables.
Kejadian Bebas dan Bersyarat Pertemuan 06
Chapter 6: Random Variables
Principles of Statistics
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 7: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Section 1 – Discrete and Continuous Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Presentation transcript:

1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung peluang fungsi diskrit dan nilai harapan dan ragamnya.

3 Outline Materi Tipe Peubah Acak Distribusi peluang peubah acak Distribusi kumulatif Nilai harapan dan varians

4 Random Variables random variableA quantitative variable x is a random variable if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event. discrete continuous.Random variables can be discrete or continuous. Examples:Examples: x = SAT score for a randomly selected student x = number of people in a room at a randomly selected time of day x = number on the upper face of a randomly tossed die

5 Probability Distributions for Discrete Random Variables probability distribution for a discrete random variable xThe probability distribution for a discrete random variable x resembles the relative frequency distributions we constructed in Chapter 1. It is a graph, table or formula that gives the possible values of x and the probability p(x) associated with each value.

6 Example Toss a fair coin three times and define x = number of heads. 1/8 P(x = 0) = 1/8 P(x = 1) = 3/8 P(x = 2) = 3/8 P(x = 3) = 1/8 P(x = 0) = 1/8 P(x = 1) = 3/8 P(x = 2) = 3/8 P(x = 3) = 1/8 HHH HHT HTH THH HTT THT TTH TTT x x xp(x) 01/8 13/8 2 31/8 Probability Histogram for x

7 Probability Distributions Probability distributions can be used to describe the population, just as we described samples in Chapter 1. –Shape: –Shape: Symmetric, skewed, mound-shaped … –Outliers: –Outliers: unusual or unlikely measurements –Center and spread:  –Center and spread: mean and standard deviation. A population mean is called  and a population standard deviation is called 

8 The Mean and Standard Deviation Let x be a discrete random variable with probability distribution p(x). Then the mean, variance and standard deviation of x are given as

9 Example Toss a fair coin 3 times and record x the number of heads. xp(x)xp(x) (x-  2 p(x) 01/80(-1.5) 2 (1/8) 13/8 (-0.5) 2 (3/8) 23/86/8(0.5) 2 (3/8) 31/83/8(1.5) 2 (1/8)

10 Example The probability distribution for x the number of heads in tossing 3 fair coins. Shape? Outliers? Center? Spread? Symmetric; mound-shaped None  = 1.5  =.688 

11 Key Concepts I. Experiments and the Sample Space 1. Experiments, events, mutually exclusive events, simple events 2. The sample space 3. Venn diagrams, tree diagrams, probability tables II. Probabilities 1. Relative frequency definition of probability 2. Properties of probabilities a. Each probability lies between 0 and 1. b. Sum of all simple-event probabilities equals P(A), the sum of the probabilities for all simple events in A

12 Key Concepts III. Counting Rules 1. mn Rule; extended mn Rule 2. Permutations: 3. Combinations: IV. Event Relations 1. Unions and intersections 2. Events a. Disjoint or mutually exclusive: P(A  B)  0 b. Complementary: P(A)  1  P(A C )

13 Key Concepts 3. Conditional probability: 4. Independent and dependent events 5. Additive Rule of Probability: 6. Multiplicative Rule of Probability: 7. Law of Total Probability 8. Bayes ’ Rule

14 Key Concepts V. Discrete Random Variables and Probability Distributions 1. Random variables, discrete and continuous 2. Properties of probability distributions 3. Mean or expected value of a discrete random variable: 4. Variance and standard deviation of a discrete random variable:

15 Selamat Belajar Semoga Sukses.