Optickle 1 The Optickle Optical Modeling Tool QND Workshop, Hannover Dec 15, 2005 Robert Ward & Matthew Evans.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Optical Springs at the 40m 1 QND Workshop, Hannover Dec 14, 2005 Robert Ward for the 40m Team Osamu Miyakawa, Rana Adhikari, Matthew Evans, Benjamin Abbott,
LIGO- G05XXXX-00-R 40m meeting, May Experimental update from the 40m team 40m TAC meeting May 13, 2005 O. Miyakawa, Caltech and the 40m collaboration.
40m Modeling and Experiment 1 Modeling the 40m QND Workshop, Hannover Dec 15, 2005 Robert Ward Seiji Kawamura, Osamu Miyakawa, Hiro Yamamoto, Matthew Evans,
Various ways to beat the Standard Quantum Limit Yanbei Chen California Institute of Technology.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Amaldi conference, June Lock acquisition scheme for the Advanced LIGO optical configuration Amaldi conference June24, 2005 O. Miyakawa, Caltech.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
LIGO- G R Amaldi7 July 14 th, 2007 R. Ward, Caltech 1 DC Readout Experiment at the Caltech 40m Laboratory Robert Ward Caltech Amaldi 7 July 14.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Frequency Dependent Squeezing Roadmap toward 10dB
Advanced LIGO Sensing and Control Readout schemes for Advanced LIGO K.A. Strain University of Glasgow G & G
LSC-March  LIGO End to End simulation  Lock acquisition design »How to increase the threshold velocity under realistic condition »Hanford 2k simulation.
1 1.Status a.Design requirements: almost complete. b.Preliminary design: on-going 2.WBS a.Tasks and subtasks b.Manpower, responsibility issues 3.Interfaces.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
RSE Experiment in Japan Feb. 20 th, 2004 Aspen Meeting LIGO-G Z K.Somiya, O.Miyakawa, P.Beyersdorf, and S.Kawamura.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
1 Development schedule of Static IFO Simulation (SIS) Basic building blocks »Framework »mirror, cavity or propagator, detector FP cavity »Simple locking,
Jan 17th 2006Ward Candicacy1 Length Sensing and Control for an Advanced Gravitational Wave Detector Robert Ward PhD Candidacy Caltech, 17 Jan 2006.
Optical Spring Experiments With The Glasgow 10m Prototype Interferometer Matt Edgar.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
Elba Gravitational Wave Adv. Detector Workshop1May 22, 2002 Simulation of LIGO Interferometers 1. End to End simulation 2. Lock acquisition 3. Noise.
LIGO-G R DC Detection at the 40m Lab DC Detection Experiment at the 40m Lab Robert Ward for the 40m Lab to the AIC group Livingston LSC meeting.
Opening our eyes to QND technical issues (workshop and open forum) “It’ll be the blind leading the blind” - Stan Whitcomb “You can see a lot by looking”
LIGO-G D Advanced LIGO Systems & Interferometer Sensing & Control (ISC) Peter Fritschel, LIGO MIT PAC 12 Meeting, 27 June 2002.
Lessons from CLIO Masatake Ohashi (ICRR, The University of TOKYO) and CLIO collaborators GWADW2012 Hawaii 2012/5/16.
Solar chameleon detection at CAST Part II: The optical resonator Sauman Cheng and Manwei Chan.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
GEO 600 Simulation Workshop
Demonstration of lock acquisition and optical response on
Overview of quantum noise suppression techniques
Progress toward squeeze injection in Enhanced LIGO
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Heterodyne Readout for Advanced LIGO
Homodyne or heterodyne Readout for Advanced LIGO?
Ponderomotive Squeezing Quantum Measurement Group
Australia-Italy Workshop October 2005
Quantum Optics and Macroscopic Quantum Measurement
Heterodyne Readout for Advanced LIGO
Modeling of Advanced LIGO with Melody
Lock Acquisition Real and Simulated
Effect of sideband of sideband on 40m and Advanced LIGO
“Traditional” treatment of quantum noise
Advanced LIGO optical configuration investigated in 40meter prototype
Estimation of each loop shot noise limit for AdLIGO
Progress report from 40m team for the Advanced LIGO
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Presentation transcript:

Optickle 1 The Optickle Optical Modeling Tool QND Workshop, Hannover Dec 15, 2005 Robert Ward & Matthew Evans

Optickle 2 Optickle: Frequency Domain IFO Simulation  Optickle is a new frequency domain IFO modeling tool: »Written in Matlab –Matlab allows easy integration to other modeling efforts (a frequency- domain e2e, like LinLIGO) –Easily Extensible –Uses Matlab classes for generality »Uses the methods outlined in T. Corbitt et al: “Mathematical framework for simulation of quantum fields in complex interferometers using the two-photon formalism” ( LIGO-P R ) to calculate the IFO opto-mechanical frequency response. »Designed for concrete units (Watts, meters, Hz)

Optickle 3 Optickle example: FP cavity  Includes losses, AR coatings, pickoff fractions, mass  Build an arbitrary IFO using Optickle class methods: »addOptic »addLink  Example: % create model opt = Optickle; % add optics [opt, snIX, nIX_HR, nIX_AR] =... addOptic(opt, 'IX', 0.005, 00e-6, 0e-3, 0e-6, 0e-6, 4e2, 0, 10); [opt, snEX, nEX_HR, nEX_AR] =... addOptic(opt, 'EX', 10e-6, 00e-6, 0e-3, 0e-6, 0e-6, 4e2, 0, 10); % add links opt = addLink(opt, snIX, 1, nEX_HR); opt = addLink(opt, snEX, 1, nIX_HR); [mf, mDC1, E_dc] = propFieldsP(opt,f,offsets,Lfield); bm = getIndexP(opt,snEX,'pos',0); b2f = getIndexP(opt,snIX,'b',2); exc = zeros(size(mf,1),length(f)); exc(bm,:) = 1; resp = fmult(mf,exc); mybodeplot(f,resp(b2f,:));

Optickle 4 Optickle Example: FP cavity  Response of front mirror to back mirror ‘excitation’  1 nm detune  finesse ~ 1200

Optickle 5 Optickle Example: AdLIGO DC Readout GW response, W/m 3pm DARM offset, 70ppm mismatch 40 kg Test Masses 15W Input Power 85 degree detune 70ppm loss mismatch

Optickle 6 Optickle Example: AdLIGO  Easy to create a frequency dependent coupling matrix, useful for, e.g., estimating the contribution of loop noise to DARM.

Optickle 7 Optickle status Current: »Free masses (no pendulum yet) »Carrier and signal sidebands only (no RF sidebands) »No servos »No beamsplitters (-> incorrect radiation pressure at BS) »Plane waves »No input vacuum fields Future: »Validation against theoretical calculations »Pendulum response for masses (quad?) »more high level methods (addSignal, addPD, addRFsideband, etc). »RF detection (no radiation pressure on RF sidebands?) »Vacuum noise »Force to position »servos? »Hermite Gaussian?