1 Structure-related changes in magnetoresistance of Co 90 Fe 10 /Cu and Co 90 Fe 10 /Cu 85 Ag 10 Au 5 multilayers D. Rafaja Inst. of Physical Metallurgy,

Slides:



Advertisements
Similar presentations
Seminarul National de Nanostiinta si Nanotehnologie
Advertisements

Gate Control of Spin Transport in Multilayer Graphene
Ag + H 2 S  Ag 2 S + H 2 Ag-Ag- H-H- S-S-. 2Ag + H 2 S  Ag 2 S + H 2.
GIANT MAGENTORESISCANCE AND MAGNETIC PROPERTIES OF ELECTRODEPOSITED Ni-Co-Cu/Cu MULTILAYERS.
Plan : lattices Characterization of thin films and bulk materials using x-ray and electron scattering V. Pierron-Bohnes IPCMS-GEMME, BP 43, 23 rue du Loess,
X-ray sources Sealed tubes - Coolidge type common - Cu, Mo, Fe, Cr, W, Ag intensity limited by cooling req'ments (2-2.5kW) Sealed tubes - Coolidge type.
Be/FS joining for ITER TBM Ryan Matthew Hunt FNST Meeting August 18, 2009 A collaboration between UCLA, SNL-Livermore, Brush-Wellman, Axsys Inc. and Bodycote.
Metal-free-catalyst for the growth of Single Walled Carbon Nanotubes P. Ashburn, T. Uchino, C.H. de Groot School of Electronics and Computer Science D.C.
Effect of Environmental Gas on the Growth of CNT in Catalystically Pyrolyzing C 2 H 2 Minjae Jung*, Kwang Yong Eun, Y.-J. Baik, K.-R. Lee, J-K. Shin* and.
T.Stobiecki Katedra Elektroniki AGH Magnetic Tunnel Junction (MTJ) or Tunnel Magnetoresistance (TMR) or Junction Magneto- Resistance (JMR) 11 wykład
Alternative representation of QW Phase accumulation model.
Röntgenbeugung und Röntgenstreuung an Multilagenschichten mit diskontinuierlichen Grenzflächen David Rafaja Institut für Metallkunde Struktur und Gefüge.
M.Czapkiewicz Department of Electronics, AGH University of Science and Technology, POLAND Calculations of interplay between anizotropy and coupling energy.
NWAPS-May Evolution of Ni-Al interface alloy for Ni deposited on Al surfaces at room temperature R. J. Smith and V. Shutthanandan* Physics Department,
The Effects of Straining on Copper-Silver Hardness By: Dhanvir Aujla Advisor: Dr. Anthony Rollett Graduate Student: Samuel Lim.
1 Reunion SOS nanotube12 13 octobre 2011 H. Okuno, J. Dijon, E. De Vito, E. Quesnel CEA Grenoble Liten-DTNM SOS nanotubes octobre 2011.
RECX Thin film metrology.
Magnetic Properties of Materials
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Grade 8 Magnets. Which of the metals below are magnetic metals? Aluminium(Al) Silver (Ag) Iron (Fe) Gold (Au) Nickel (Ni) Cobalt (Co) Copper (Cu) Zinc(Zn)
Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.
Seminar Author: Bojan Hiti Mentor: doc. dr. Matjaž Kavčič Determination of trace impurities on Si wafers with x-ray fluorescence.
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
BIOCYANIDE DEMONSTRATION PROJECT Activity III ; Project 5.
THERMODYNAMIC MODELLING OF INTERDIFFUSION IN Fe-Co AND Fe-Ni BONDS Matej Pašák.
Comparison of Field Emission Behaviors of Graphite, Vitreous Carbon and Diamond Powders S. H. Lee, K. R. Lee, K. Y. Eun Thin Film Technology Research Center,
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
XAFS Studies in U7C Wiggler XAFS Studies in U7C Wiggler Beam-line of NSRL Shiqiang Wei, Xinyi Zhang Hongwei Yang, and Faqiang Xu National Synchrotron Radiation.
SOFT X-RAY SCATTERING AT ESRF: A BRIEF OVERVIEW Peter Bencok European Synchrotron Radiation Facility Grenoble, France.
Atomic Scale Understanding of the Surface Intermixing during Thin Metal Film Growth 김상필 1,2, 이승철 1, 정용재 2, 이규환 1, 이광렬 1 1 한국과학기술연구원, 계산과학센터 2 한양대학교, 재료공학부.
Symbol Review ? ? ? ? ? ? ?.
Bromine Calcium Carbon Chlorine Cobalt Copper Gold Hydrogen Iodine Iron Lead Nitrogen Nickel Mercury Magnesium Aluminum Oxygen Phosphorus Silver Sodium.
Department of Chemistry-BK 21, SungKyunKwan Univ.
H. Giefers, University of Paderborn Introduction XAFS 12 in Malmö 24. June 2003 High-pressure EXAFS and XRD investigation of unit cell parameters of SnO.
Highly Ordered Deposition of MgAl-CO3 Layered Double Hydroxides on Si(100) Surface by Solvothermal Treatment 이종현 , 이석우 , 송여진 , 정덕영* 성균관대학교 Skku. Inorganic.
Plan : lattices Characterization of thin films and bulk materials using x-ray and electron scattering V. Pierron-Bohnes IPCMS-GEMME, BP 43, 23 rue du Loess,
1 Al 2 O 3 sapphire 50nm GaN buffer layer at 550 。 C 3μm Si-doped n + -GaN at 1050 。 C MQW at 770 。 C 50nm Mg-doped p-Al 0.15 Ga 0.85 N EBL at 1050 。 C.
COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Sputtering Procedures Lecture 11 G.J. Mankey
1 Institute of Isotopes, Budapest, Hungary; 2 Research Institute for Technical Physics and Materials Science, Budapest Hungary; 3 Chemical Physics of Materials,
Parameters of the new diffractometer “ARES” Aleksey E. Sokolov PNPI NRC “KI”
CHARACTERIZATION OF NATURAL AND ENGINEERED NANOPARTICLES: SHAPE, SIZE AND CHEMICAL COMPOSITION Lucia Manangon
Transport Results S51 3nm Ti / 60nm Au / C10-dithiol / 20nm Au Nanotransfer printed (50 micron pads)
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
The International Conference of Metallurgical Coating and Thin Films ICMCTF 2003 Tae-Young Kim a)b), Kwang-Ryeol Lee a), Seung-Cheol Lee a), Kwang Yong.
MENA3100, 27/1-09, OBK X-ray diffractionXRD Røntgendiffraksjon Single crystalPowder.
X-ray diffraction for today and tomorrow
WMNC – Dallas – june 9th 2016 Microsensors for instrumented medical tools for their real time monitoring Agnès Bonvilain TIMA Laboratory.
The swift heavy ion modification of Fe/Cr multilayer properties Małgorzata Kąc The Henryk Niewodniczański Insitute of Nuclear Physics, Polish Academy of.
NATIONAL RESEARCH NUCLEAR UNIVERSITY (MEPhI) DEPARTMENT OF EXPEREMENTAL NUCLEAR PHYSICS AND COSMOPHYSICS MULTILAYER FILM SHIELDS FOR THE PROTECTION OF.
Novel Aluminum-based High-Q Cold RF Resonators for ADMX Katsuya Yonehara ADMX RF resonator workshop at LLNL th August, 2015.
Luminescent Periodic Microstructures for Medical Applications
Effect of Heat Treatment on Properties of Sputtered Co100-xCux Film
TEST OF A CONFOCAL MULTILAYER
Visit for more Learning Resources
4H-SiC substrate preparation - graphitization
Weekly Group Meeting Report
P2-D125 Decrement of the Exchange Stiffness Constant of CoFeB thin films with Ar gas pressure. Jaehun Cho, Jinyong Jung, Ka-Eon Kim, Sukmock Lee Chun-Yeol.
Fabrication of Nano-porous Templates Using Molecular Self-Assembly of Block Copolymers for the Synthesis of Nanostructures Luke Soule, Jason Tresback Center.
List of materials which have been evaporated:
Instrumentation systems
Forces & Interactions Magnets and Magnetism.
Substrate High Resolution Medium Resolution Substrate Substrate
Yuanmin Shao, and Zuimin Jiang
نانو سرامیک‌های مورد استفاده در دارو‌رسانی
Speed Dating Speed Dating H Na Speed Dating Speed Dating K Be.
A new approach to strengthen grain boundaries for creep
David Rafaja Institut für Metallkunde
Increase in Ease of Oxidation
Yuanmin Shao, and Zuimin Jiang
Presentation transcript:

1 Structure-related changes in magnetoresistance of Co 90 Fe 10 /Cu and Co 90 Fe 10 /Cu 85 Ag 10 Au 5 multilayers D. Rafaja Inst. of Physical Metallurgy, TU Bergakademie Freiberg J. Ebert, G. Miehe, N. Martz, M. Knapp, B. Stahl, M. Ghafari, H. Hahn and H. Fuess Inst. of Materials Science, TU Darmstadt P. Schmollengruber, P. Farber and H.Siegle Robert Bosch GmbH, Stuttgart

2 GMR multilayers Co 90 Fe 10 /(Cu,Ag,Au) Si (111) SiO 2 (750  m) Fe (4.4 nm) Co 90 Fe 10 (1.1 nm) Cu (2.2 nm) 20x Si (111) SiO 2 (750  m) Fe (4.4 nm) Co 90 Fe 10 (1.1 nm) Cu 85 Ag 10 Au 5 (2.2 nm) Co 90 Fe 10 /Cu Co 90 Fe 10 /Cu 85 Ag 10 Au 5 Soft annealing: 1 hour at °C substrate buffer

3 Magnetoresistance Co 90 Fe 10 /Cu Co 90 Fe 10 /Cu 85 Ag 10 Au 5 Co 90 Fe 10 /Cu Co 90 Fe 10 / Cu 85 Ag 10 Au 5

4 Anomalous X-ray scattering T.Bigault, F.Bocquet, S.Labat, O.Thomas and H.Renevier, Phys.Rev.B 64 (2001) Fe 27 Co 28 Ni 29 Cu 47 Ag 79 Au

5 Experimental set-up (conventional) X-ray tube CuK Göbel mirror Sample Secondary graphite monochromator Detector Slit 0.1mm Slit 0.05 mm = Å Seifert – PTS

6 Experimental set-up (HASYLAB) Mirror Sample Secondary graphite monochromator Detector Slit 0.1mm Slit 0.05 mm Beamline B2 2xGe(111) PETRA = 1.13 Å = 1.37 Å = 1.39 Å Huber – Eulerian cradle

7 Virgin multilayer (Co 90 Fe 10 /Cu)  20 [Å]

8 TEM and SAED TEM at a strong overfocus SAED (diameter 250 nm)

9 Annealed multilayer (Co 90 Fe 10 /Cu)  20 t (CoFe) [nm] t (Cu) [nm] 20°C (1.16±0.12) (2.06±0.11) 235°C (1.16±0.12) (2.04±0.15) 340°C (1.19±0.13) (2.02±0.20)  (CoFe) [nm]  (Cu) [nm] 20°C (0.73±0.21) (0.88±0.20) 235°C (0.83±0.27) (1.03±0.20) 340°C (0.87±0.30) (1.15±0.30) Refined parameters XRR: = 1.37Å ;  : = 1.39 Å Interface discontinuity at 340°C

10 Annealed multilayer (Co 90 Fe 10 /Cu)  20 As prepared 235°C 340°C 111 Cu 1 hour = Å

11 Virgin multilayer (Co 90 Fe 10 /Cu 85 Ag 10 Au 5 )  20 [Å] Co 90 Fe 10 /Cu

12 Virgin multilayer (Co 90 Fe 10 /Cu 85 Ag 10 Au 5 )  20 Co 90 Fe 10 /Cu Co 90 Fe 10 /Cu 85 Ag 10 Au 5

13 Annealed multilayer (Co 90 Fe 10 /Cu 85 Ag 10 Au 5 )  20 Refined parameters t (CoFe) [nm] t (CuAgAu) [nm] 20°C (1.14±0.13) (2.09±0.11) 235°C (1.13±0.12) (2.08±0.12) 340°C (1.09±0.14) (2.11±0.14)  (CoFe) [nm]  (CuAgAu) [nm] 20°C (0.75±0.28) (0.89±0.20) 235°C (0.75±0.30) (0.93±0.25) 340°C (0.83±0.34) (1.07±0.23) No interface discontinuity at 340°C

14 Annealed multilayer (Co 90 Fe 10 /Cu 85 Ag 10 Au 5 )  20 As prepared 235°C 340°C 111 Cu 1 hour

15 Structure model for Co 90 Fe 10 /Cu Cu CoFe Cu CoFe annealing Cu CoFe Cu Increase of interface roughness. Onset of interface discontinuity.

16 Structure model for Co 90 Fe 10 /Cu 85 Ag 10 Au 5 Cu(Au) CoFe annealing Cu Ag Increase of interface roughness. Separation of gold and silver. Au

17 Conclusions n Annealing at 235°C initiated out-diffusion of Co and Cu and an increase of the interface roughness in both systems  still, the GMG effect was improved n Annealing at higher temperatures led to degradation of the multilayer structure and to the decrease of GMR: – Co 90 Fe 10 /Cu – discontinuity of interfaces – Co 90 Fe 10 /Cu 85 Ag 10 Au 5 – precipitation of Ag and Au at the surface (Ag) and within the layers (Au)