Computer Networks : TCP Congestion Control1 TCP Congestion Control.

Slides:



Advertisements
Similar presentations
Slide Set 14: TCP Congestion Control. In this set... We begin Chapter 6 but with 6.3. We will cover Sections 6.3 and 6.4. Mainly deals with congestion.
Advertisements

Different TCP Flavors CSCI 780, Fall TCP Congestion Control Slow-start Congestion Avoidance Congestion Recovery Tahoe, Reno, New-Reno SACK.
TCP Congestion Control
EE 4272Spring, 2003 Chapter 17 Transport Protocols Connection-Oriented Transport Protocol  Under Reliable Network Service  Design Issues  Under Unreliable.
ECE 4450:427/527 - Computer Networks Spring 2015
Congestion Control Created by M Bateman, A Ruddle & C Allison As part of the TCP View project.
Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth Edition,Peterson.
Introduction 1 Lecture 14 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
School of Information Technologies TCP Congestion Control NETS3303/3603 Week 9.
Introduction to Congestion Control
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
1 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Third Ed.,Peterson.
1 Lecture 9: TCP and Congestion Control Slides adapted from: Congestion slides for Computer Networks: A Systems Approach (Peterson and Davis) Chapter 3.
Spring 2002CS 4611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
Spring 2003CS 4611 Congestion Control Outline Queuing Discipline Reacting to Congestion Avoiding Congestion.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
Networks : TCP Congestion Control1 TCP Congestion Control.
Networks : TCP Congestion Control1 TCP Congestion Control Presented by Bob Kinicki.
Advanced Computer Networks: TCP Congestion Control 1 TCP Congestion Control Lecture material taken from “Computer Networks A Systems Approach”, Fourth.
TCP Congestion Control
EE 4272Spring, 2003 Chapter 17 Transport Protocols Connection-Oriented Transport Protocol  Reliable Network Service: Design Issues  Unreliable Network.
TCP: flow and congestion control. Flow Control Flow Control is a technique for speed-matching of transmitter and receiver. Flow control ensures that a.
Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!
Lecture 9 – More TCP & Congestion Control
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March
1 Transport Layer Lecture 10 Imran Ahmed University of Management & Technology.
CS640: Introduction to Computer Networks Aditya Akella Lecture 15 TCP – III Reliability and Implementation Issues.
Computer Networking Lecture 18 – More TCP & Congestion Control.
1 CS 4396 Computer Networks Lab TCP – Part II. 2 Flow Control Congestion Control Retransmission Timeout TCP:
CS640: Introduction to Computer Networks Aditya Akella Lecture 15 TCP – III Reliability and Implementation Issues.
TCP Congestion Control Computer Networks TCP Congestion Control 1.
Spring 2009CSE Congestion Control Outline Resource Allocation Queuing TCP Congestion Control.
1 Computer Networks Congestion Avoidance. 2 Recall TCP Sliding Window Operation.
TCP Congestion Control
CS 6401 Congestion Control in TCP Outline Overview of RENO TCP Reacting to Congestion SS/AIMD example.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking Congestion Control 0.
Spring Computer Networks1 Congestion Control II Outline Queuing Discipline Reacting to Congestion Avoiding Congestion DECbit Random Early Detection.
Transmission Control Protocol (TCP) TCP Flow Control and Congestion Control CS 60008: Internet Architecture and Protocols Department of CSE, IIT Kharagpur.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CS450 – Introduction to Networking Lecture 19 – Congestion Control (2)
9.6 TCP Congestion Control
Transport Layer CS 381 3/7/2017.
Chapter 3 outline 3.1 transport-layer services
Chapter 6 TCP Congestion Control
COMP 431 Internet Services & Protocols
Congestion Control.
Introduction to Congestion Control
Congestion Control Outline Queuing Discipline Reacting to Congestion
TCP - Part II Relates to Lab 5. This is an extended module that covers TCP flow control, congestion control, and error control in TCP.
TCP.
CSS432 Congestion Control Textbook Ch6.1 – 6.4
ECE 4450:427/527 - Computer Networks Spring 2017
So far, On the networking side, we looked at mechanisms to links hosts using direct linked networks and then forming a network of these networks. We introduced.
The University of Adelaide, School of Computer Science
Congestion Control in TCP
Advanced Computer Networks
Chapter 6 TCP Congestion Control
If both sources send full windows, we may get congestion collapse
TCP Congestion Control
CS4470 Computer Networking Protocols
TCP Overview.
Congestion Control in TCP
Advanced Computer Networks
Transport Layer: Congestion Control
Chapter 3 outline 3.1 Transport-layer services
TCP flow and congestion control
Presentation transcript:

Computer Networks : TCP Congestion Control1 TCP Congestion Control

Computer Networks : TCP Congestion Control2 TCP Congestion Control Essential strategy :: The TCP host sends packets into the network without a reservation and then the host reacts to observable events. Originally TCP assumed FIFO queuing. Basic idea :: each source determines how much capacity is available to a given flow in the network. ACKs are used to ‘pace’ the transmission of packets such that TCP is “self-clocking”.

Computer Networks : TCP Congestion Control3 AIMD (Additive Increase / Multiplicative Decrease) CongestionWindow (cwnd) is a variable held by the TCP source for each connection. cwnd is set based on the perceived level of congestion. The Host receives implicit (packet drop) or explicit (packet mark) indications of internal congestion. MaxWindow :: min (CongestionWindow, AdvertisedWindow) EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked )

Computer Networks : TCP Congestion Control4 Additive Increase Additive Increase is a reaction to perceived available capacity. Linear Increase basic idea:: For each “cwnd’s worth” of packets sent, increase cwnd by 1 packet. In practice, cwnd is incremented fractionally for each arriving ACK. increment = MSS x (MSS /cwnd) cwnd = cwnd + increment

Computer Networks : TCP Congestion Control5 Figure 6.8 Additive Increase SourceDestination Add one packet each RTT

Computer Networks : TCP Congestion Control6 Multiplicative Decrease *The key assumption is that a dropped packet and the resultant timeout are due to congestion at a router or a switch. Multiplicate Decrease:: TCP reacts to a timeout by halving cwnd. Although cwnd is defined in bytes, the literature often discusses congestion control in terms of packets (or more formally in MSS == Maximum Segment Size). cwnd is not allowed below the size of a single packet.

Computer Networks : TCP Congestion Control7 AIMD (Additive Increase / Multiplicative Decrease) It has been shown that AIMD is a necessary congestion for TCP congestion control to be stable. Because the simple CC mechanism involves timeouts that cause retransmissions, it is important that hosts have an accurate timeout mechanism. Timeouts set as a function of average RTT and standard deviation of RTT. However, TCP hosts only sample round-trip time once per RTT using coarse-grained clock.

Computer Networks : TCP Congestion Control8 Figure 6.9 Typical TCP Sawtooth Pattern

Computer Networks : TCP Congestion Control9 Slow Start Linear additive increase takes too long to ramp up a new TCP connection from cold start. Beginning with TCP Tahoe, the slow start mechanism was added to provide an initial exponential increase in the size of cwnd. Remember mechanism by: slow start prevents a slow start. Moreover, slow start is slower than sending a full advertised window’s worth of packets all at once.

Computer Networks : TCP Congestion Control10 Slow Start The source starts with cwnd = 1. Every time an ACK arrives, cwnd is incremented.  cwnd is effectively doubled per RTT “epoch”. Two slow start situations:  At the very beginning of a connection {cold start}.  When the connection goes dead waiting for a timeout to occur (i.e, the advertized window goes to zero!)

Computer Networks : TCP Congestion Control11 Figure 6.10 Slow Start SourceDestination Slow Start Add one packet per ACK

Computer Networks : TCP Congestion Control12 Slow Start However, in the second case the source has more information. The current value of cwnd can be saved as a congestion threshold. This is also known as the “slow start threshold” ssthresh.

Computer Networks : TCP Congestion Control13 Figure 6.11 Behavior of TCP Congestion Control

Computer Networks : TCP Congestion Control14 Fast Retransmit Coarse timeouts remained a problem, and Fast retransmit was added with TCP Tahoe. Since the receiver responds every time a packet arrives, this implies the sender will see duplicate ACKs. Basic Idea:: use duplicate ACKs to signal lost packet. Fast Retransmit Upon receipt of three duplicate ACKs, the TCP Sender retransmits the lost packet.

Computer Networks : TCP Congestion Control15 Fast Retransmit Generally, fast retransmit eliminates about half the coarse-grain timeouts. This yields roughly a 20% improvement in throughput. Note – fast retransmit does not eliminate all the timeouts due to small window sizes at the source.

Computer Networks : TCP Congestion Control16 Figure 6.12 Fast Retransmit Fast Retransmit Based on three duplicate ACKs

Computer Networks : TCP Congestion Control17 Figure 6.13 TCP Fast Retransmit Trace

Computer Networks : TCP Congestion Control18 Congestion window Round-trip times Slow start Congestion avoidance Congestion occurs Threshold Figure 7.63Leon-Garcia & Widjaja: Communication Networks Copyright ©2000 The McGraw Hill Companies TCP Congestion Control

Computer Networks : TCP Congestion Control19 Fast Recovery Fast recovery was added with TCP Reno. Basic idea:: When fast retransmit detects three duplicate ACKs, start the recovery process from congestion avoidance region and use ACKs in the pipe to pace the sending of packets. Fast Recovery After Fast Retransmit, half cwnd and commence recovery from this point using linear additive increase ‘primed’ by left over ACKs in pipe.

Computer Networks : TCP Congestion Control20 Modified Slow Start With fast recovery, slow start only occurs: –At cold start –After a coarse-grain timeout This is the difference between TCP Tahoe and TCP Reno!!

Computer Networks : TCP Congestion Control21 Congestion window Round-trip times Slow start Congestion avoidance Congestion occurs Threshold Figure 7.63Leon-Garcia & Widjaja: Communication Networks Copyright ©2000 The McGraw Hill Companies TCP Congestion Control Fast recovery would cause a change here.