Boolean Algebra and Logic Gates

Slides:



Advertisements
Similar presentations
Boolean Algebra and Logic Gates
Advertisements

Boolean Algebra and Logic Gates
Chapter 2 Logic Circuits.
Gate-Level Minimization. Digital Circuits The Map Method The complexity of the digital logic gates the complexity of the algebraic expression.
Chapter 2 – Combinational Logic Circuits Part 1 – Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals.
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
28/06/041 CSE-221 Digital Logic Design (DLD) Lecture-5: Canonical and Standard forms and Integrated Circuites.
Chapter Two Boolean Algebra and Logic Gate
Chapter 2: Boolean Algebra and Logic Functions
Chapter 2 Boolean Algebra and Logic Gates
Boolean Algebra Boolean algebra Boolean algebra, like any other deductive mathematical system, may be defined with –a set of elements, –a set of operators,
Logic Design CS221 1 st Term Boolean Algebra Cairo University Faculty of Computers and Information.
1 Why study Boolean Algebra? 4 It is highly desirable to find the simplest circuit implementation (logic) with the smallest number of gates or wires. We.
CS1104: Computer Organisation School of Computing National University of Singapore.
BOOLEAN ALGEBRA Saras M. Srivastava PGT (Computer Science)
Chapter 2 Boolean Algebra and Logic Gates 授課教師 : 張傳育 博士 (Chuan-Yu Chang Ph.D.) Tel: (05) ext.
1 Representation of Logic Circuits EE 208 – Logic Design Chapter 2 Sohaib Majzoub.
Chapter 2. Outlines 2.1 Introduction 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra 2.4 Basic thermos and proprieties of Boolean Algebra.
1 Binary Codes Digital systems use 2-state devices that understand only 2 binary values (0 and 1). But we communicate using various symbols and methods.
Logic Design Dr. Yosry A. Azzam.
Chapter 2: Boolean Algebra and Logic Gates. F 1 = XY’ + X’Z XYZX’Y’XY’X’ZF1F
Switching Theory and Logic Design
Digital System Ch2-1 Chapter 2 Boolean Algebra and Logic Gates Ping-Liang Lai ( 賴秉樑 ) Digital System 數位系統.
LOGIC GATES & BOOLEAN ALGEBRA
Boolean Algebra and Logic Gates
1 Boolean Algebra  Digital circuits Digital circuits  Boolean Algebra Boolean Algebra  Two-Valued Boolean Algebra Two-Valued Boolean Algebra  Boolean.
ENGIN112 L6: More Boolean Algebra September 15, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra A B.
ece Parity Used to check for errors Can be either ODD or EVEN Left most bit used as the indicator For EVEN, insert a 0 or a 1 so as to make the.
A. Abhari CPS2131 Chapter 2: Boolean Algebra and Logic Gates Topics in this Chapter: Boolean Algebra Boolean Functions Boolean Function Simplification.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
Logic Circuits Lecture 3 By Amr Al-Awamry. Basic Definitions Binary Operators  AND z = x y = x yz=1 if x=1 AND y=1  OR z = x + y z=1 if x=1 OR y=1 
2. Boolean Algebra and Logic Gates
Binary Logic and Gates Boolean Algebra Canonical and Standard Forms Chapter 2: Boolean Algebra and Logic Gates.
D IGITAL L OGIC D ESIGN I B OOLEAN A LGEBRA AND L OGIC G ATE 1.
Boolean Algebra & Logic Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Module 5.  In Module 3, you have learned the concept of Boolean Algebra which consists of binary variables and binary operator.  A binary variable x,
Boolean Algebra and Logic Gates
Chapter 2: Basic Definitions BB inary Operators ●A●AND z = x y = x yz=1 if x=1 AND y=1 ●O●OR z = x + yz=1 if x=1 OR y=1 ●N●NOT z = x = x’ z=1 if x=0.
Lecture 18: Boolean Algebra Boolean Functions. w = Chris is allowed to watch television x = Chris's homework is finished y = it is a school night z =
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 4 Dr. Shi Dept. of Electrical and Computer Engineering.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
CSE 461. Binary Logic Binary logic consists of binary variables and logical operations. Variables are designated by letters such as A, B, C, x, y, z etc.
1 논리공학 고려대학교 전기전자전파공학부 김종국. 2  1 or 0, yes or no, true or false …  디지털 시스템을 위한 기초  거의 모든 전기전자제품은 디지털 시스템 e.g., 핸드폰, 전자시계, 컴퓨터 …  이진수  필요성  십진수에서.
Fuw-Yi Yang1 數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: Fuw-Yi.
Basic Laws, theorems, and postulates of Boolean Algebra
Mu.com.lec 9. Overview Gates, latches, memories and other logic components are used to design computer systems and their subsystems Good understanding.
CHAPTER 2 Boolean algebra and Logic gates
Table 2.1 Postulates and Theorems of Boolean Algebra
Chapter 2: Boolean Algebra and Logic Functions
Unit 2 Boolean Algebra.
ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture)
CS 105 Digital Logic Design
Princess Sumaya University
Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經 察政章(Chapter 58) 伏者潛藏也
Lecture 3: Boolean Algebra
Boolean Algebra Why study Boolean Algebra?
Boolean Algebra.
17-Nov-18 Logic Algebra 1 Combinational logic.
Boolean Algebra.
INTRODUCTION TO LOGIC DESIGN Chapter 2 Boolean Algebra and Logic Gates
Boolean Algebra.
Boolean Algebra & Logic Circuits
Lecture 14: Boolean Algebra
Chapter 2 Boolean Algebra and Logic Gate
2. Boolean Algebra and Logic Gates
MINTERMS and MAXTERMS Week 3
Table 2.1 Postulates and Theorems of Boolean Algebra
Digital Logic Chapter-2
Digital Logic Chapter-2
Presentation transcript:

Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates

Boolean Algebra (E.V. Huntington, 1904) A set of elements B and two binary operators + and . Closure w.r.t. the operator + (.) x, y Î B ' x+y ÎB An identity element w.r.t. + (.) 0+x = x+0 = x 1.x = x.1= x Commutative w.r.t. + (.) x+y = y+x x.y = y.x

" x Î B, $ x' Î B (complement of x) ' x+x'=1 and x.x'=0 . is distributive over +: x.(y+z)=(x.y)+(x.z) + is distributive over.: x+(y.z)=(x+y).(x+z) " x Î B, $ x' Î B (complement of x) ' x+x'=1 and x.x'=0 $ at least two elements x, y Î B ' x ≠ y Note the associative law can be derived no additive and multiplicative inverses complement

Two-valued Boolean Algebra The rules of operations Closure The identity elements +: 0 .: 1

The commutative laws The distributive laws

Has two distinct elements 1 and 0, with 0 ≠ 1 Note Complement x+x'=1: 0+0'=0+1=1; 1+1'=1+0=1 x.x'=0: 0.0'=0.1=0; 1.1'=1.0=0 Has two distinct elements 1 and 0, with 0 ≠ 1 Note a set of two elements + : OR operation; . : AND operation a complement operator: NOT operation Binary logic is a two-valued Boolean algebra

Basic Theorems and Properties Duality the binary operators are interchanged; AND <-> OR the identity elements are interchanged; 1 <-> 0

Theorem 1(a): x+x = x Theorem 1(b): x x = x x+x = (x+x) 1 by postulate: 2(b) = (x+x) (x+x') 5(a) = x+xx' 4(b) = x+0 5(b) = x 2(a) Theorem 1(b): x x = x xx = x x + 0 = xx + xx' = x (x + x') = x 1 = x

Theorem 2 Theorem 3: (x')' = x x + 1 = 1 (x + 1) = (x + x')(x + 1) = x + x' 1 = x + x' = 1 x 0 = 0 by duality Theorem 3: (x')' = x Postulate 5 defines the complement of x, x + x' = 1 and x x' = 0 The complement of x' is x is also (x')'

Theorem 6 By means of truth table x + xy = x 1 + xy = x (1 +y) = x 1 = x x (x + y) = x by duality By means of truth table

DeMorgan's Theorems (x+y)' = x' y' (x y)' = x' + y'

Operator Precedence parentheses NOT AND OR examples x y' + z

Boolean Functions A Boolean function Examples binary variables binary operators OR and AND unary operator NOT parentheses Examples F1= x y z' F2 = x + y'z F3 = x' y' z + x' y z + x y' F4 = x y' + x' z

Two Boolean expressions may specify the same function The truth table of 2n entries Two Boolean expressions may specify the same function F3 = F4

Implementation with logic gates F4 is more economical

Algebraic Manipulation To minimize Boolean expressions literal: a primed or unprimed variable (an input to a gate) term: an implementation with a gate The minimization of the number of literals and the number of terms => a circuit with less equipment It is a hard problem (no specific rules to follow) x(x'+y) = xx' + xy = 0+ xy = xy x+x'y = (x+x')(x+y) = 1 (x+y) = x+y (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x

x'y'z + x'yz + xy' = x'z(y'+y) + xy' = x'z + xy' xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + x'z(1+y) = xy +x'z (x+y)(x'+z)(y+z) = (x+y)(x'+z) by duality from the previous result

Complement of a Function an interchange of 0's for 1's and 1's for 0's in the value of F by DeMorgan's theorem (A+B+C)' = (A+X)' let B+C = X = A'X' by DeMorgan's = A'(B+C)' = A'(B'C') by DeMorgan's = A'B'C' associative generalizations (A+B+C+ ... +F)' = A'B'C' ... F' (ABC ... F)' = A'+ B'+C'+ ... +F'

(x'yz' + x'y'z)' = (x'yz')' (x‘y'z)' = (x+y'+z) (x+y+z') [x(y'z'+yz)]' = x' + ( y'z'+yz)' = x' + (y'z')' (yz)' = x' + (y+z) (y'+z') A simpler procedure take the dual of the function and complement each literal x'yz' + x'y'z => (x'+y+z') (x'+y'+z) (the dual) => (x+y'+z)(x+y+z')

Canonical and Standard Forms Minterms and Maxterms A minterm: an AND term consists of all literals in their normal form or in their complement form For example, two binary variables x and y, xy, xy', x'y, x'y' It is also called a standard product n variables con be combined to form 2n minterms A maxterm: an OR term It is also call a standard sum 2n maxterms

each maxterm is the complement of its corresponding minterm, and vice versa

An Boolean function can be expressed by a truth table sum of minterms f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7 f2 = x'yz+ xy'z + xyz'+xyz = m3 + m5 +m6 + m7

The complement of a Boolean function the minterms that produce a 0 f1' = m0 + m2 +m3 + m5 + m6 = x'y'z'+x'yz'+x'yz+xy'z+xyz' f1 = (f1')' = (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M0 M2 M3 M5 M6 Any Boolean function can be expressed as a sum of minterms a product of maxterms canonical form

Sum of minterms F = A+B'C = A (B+B') + B'C = AB +AB' + B'C = AB(C+C') + AB'(C+C') + (A+A')B'C =ABC+ABC'+AB'C+AB'C'+A'B'C F = A'B'C +AB'C' +AB'C+ABC'+ ABC = m1 + m4 +m5 + m6 + m7 F(A,B,C) = S(1, 4, 5, 6, 7) or, built the truth table first

Product of maxterms x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') =(x+y+z)(x+y+z’)(x+y'+z) F = xy + x'z = (xy + x') (xy +z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z) x'+y = x' + y + zz' = (x'+y+z)(x'+y+z') F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') = M0M2M4M5 F(x,y,z) = P(0,2,4,5)

Conversion between Canonical Forms F(A,B,C) = S(1,4,5,6,7) F'(A,B,C) = S(0,2,3) By DeMorgan's theorem F(A,B,C) = P(0,2,3) mj' = Mj sum of minterms = product of maxterms interchange the symbols S and P and list those numbers missing from the original form S of 1's P of 0's

Standard Forms Canonical forms are seldom used sum of products F1 = y' + zy+ x'yz' product of sums F2 = x(y'+z)(x'+y+z'+w) F3 = A'B'CD+ABC'D'

Two-level implementation Multi-level implementation

Digital Logic Gates Boolean expression: AND, OR and NOT operations Constructing gates of other logic operations the feasibility and economy the possibility of extending gate's inputs the basic properties of the binary operations the ability of the gate to implement Boolean functions

Extension to multiple inputs A gate can be extended to multiple inputs if its binary operation is commutative and associative AND and OR are commutative and associative (x+y)+z = x+(y+z) = x+y+z (x y)z = x(y z) = x y z

Multiple NOR = a complement of OR gate Multiple NAND = a complement of AND The cascaded NAND operations = sum of products The cascaded NOR operations = product of sums

The XOR and XNOR gates are commutative and associative Multiple-input XOR gates are uncommon? XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's