H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ) On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation.

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

2Instituto de Ciencia de Materiales de Madrid,
Radboud University Nijmegen PhD thesis, Claudiu Daniel Stanciu Radboud University Nijmegen, The Netherlands ( ) (now working at Océ Technologies)
PHYSICS OF MAGNETIC RESONANCE
Ultrafast Experiments Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics II (Spring.
Chapter 29 Magnetic Fields.
Single-Shot Tomographic Imaging of Evolving, Light Speed Object Zhengyan Li, Rafal Zgadzaj, Xiaoming Wang, Yen-Yu Chang, Michael C. Downer Department of.
Transient ferromagnetic state mediating ultrafast reversal of antiferromagnetically coupled spins I. Radu1,2*, K. Vahaplar1, C. Stamm2, T. Kachel2, N.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
Magnetization switching without charge or spin currents J. Stöhr Sara Gamble and H. C. Siegmann, SLAC, Stanford A. Kashuba Bogolyubov Institute for Theoretical.
Optical Control of Magnetization and Modeling Dynamics Tom Ostler Dept. of Physics, The University of York, York, United Kingdom.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Atomistic Modelling of Ultrafast Magnetization Switching Ultrafast Conference on Magnetism J. Barker 1, T. Ostler 1, O. Hovorka 1, U. Atxitia 1,2, O. Chubykalo-Fesenko.
Spin Excitations and Spin Damping in Ultrathin Ferromagnets D. L. Mills Department of Physics and Astronomy University of California Irvine, California.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
STXM Cat Graves Stöhr Group SASS Talk 09/30/09.
Research Opportunities at LCLS September 2011 Joachim Stöhr.
Materials in extreme THz fields at FACET SLAC, March 18, 2010 FACET Workshop Aaron Lindenberg Department of Materials Science and Engineering, Stanford.
Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies Joachim Stöhr SLAC, Stanford University
Ultrafast Manipulation of the Magnetization J. Stöhr Sara Gamble and H. C. Siegmann, SLAC, Stanford A. Kashuba Bogolyubov Institute for Theoretical Physics,
Research Opportunities in Radiation-Induced Chemical Dynamics Scientific Opportunities for Studying Laser Excited Dynamics at the LCLS: David Bartels Notre.
X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way……
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Optical study of Spintronics in III-V semiconductors
Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford ) Exploring Ultrafast Excitations in Solids with Pulsed e-Beams Joachim Stöhr and Hans Siegmann.
Stanford - SSRL: J. Lüning W. Schlotter H. C. Siegmann Y. Acremann...students Berlin - BESSY: S. Eisebitt M. Lörgen O. Hellwig W. Eberhardt Probing Magnetization.
In Memory of H. C. Siegmann - the father of modern spin physics Joachim Stöhr SLAC.
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
Carrier Wave Rabi Flopping (CWRF) Presentation by Nathan Hart Conditions for CWRF: 1.There must exist a one photon resonance with the ground state 2.The.
Pattern Formation Induced by Modulation Instability in Nonlinear Optical System Ming-Feng Shih( 石明豐 ) Department of Physics National Taiwan University.
Optically Pumping Nuclear Magnetic Spin M.R.Ross, D.Morris, P.H. Bucksbaum, T. Chupp Physics Department, University of Michigan J. Taylor, N. Gershenfeld.
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Absorption Spectroscopy J. Stöhr, NEXAFS SPECTROSCOPY,
Birth of the X-Ray Laser and a New Era of Science Joachim Stohr
Modeling light trapping in nonlinear photonic structures
1 From Solitons to Precessional Dynamics and Chaos - Nonlinear Spin Waves in Magnetic Thin Films Carl E. Patton, Department of Physics, Colorado State.
Light Propagation in Photorefractive Polymers
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Understanding Magnetic Switching: Spin Wave Visualization.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
The Story of Giant Magnetoresistance (GMR)
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Magnetization dynamics
Nuclear Magnetic Resonance I Magnetization properties Generation and detection of signals.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1.
Katsuki Okuno Miyasaka Laboratory 1.  Introduction Definition Example of Photochromic Molecules History  Recent research Photochromism in single crystal.
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
After the Supernova: Pulsars Melissa Anholm University of Wisconsin-Milwaukee 29 September, 2008.
V.G.Wimalasena Principal School of Radiography
The Structure and Dynamics of Solids
Quantum Efficiency Dependence on the Incidence Light Angle in Copper Photocathodes: Vectorial Photoelectric Effect Emanuele Pedersoli Università Cattolica.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Shock heating by Fast/Slow MHD waves along plasma loops
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
Salle de séminaire, IJL-Vandoeuvre Entrée 2A 4éme Etage
Wakefield Accelerator
The SPS 800 MHz RF system E. Shaposhnikova for BE/RF
Micromagnetic Simulations of Systems with Shape-Induced Anisotropy
Electromagnetic Waves
P. He1,4, X. Ma2, J. W. Zhang4, H. B. Zhao2,3, G. Lupke2, Z
Observation of twist-induced geometric phases and inhibition of optical tunneling via Aharonov-Bohm effects by Midya Parto, Helena Lopez-Aviles, Jose E.
Presentation transcript:

H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ) On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation Laboratory Collaborators: A. Vaterlaus (ETH Zürich) A. Kashuba (Landau Inst. Moscow) ; A. Dobin (Seagate) D. Weller, G. Ju, B.Lu (Seagate Technologies) G. Woltersdorf, B. Heinrich (S.F.U. Vancouver) samples theory magnetic imaging

The ultrafast technology gap want to reliably switch small magnetic “bits” The Technology Problem: Smaller and Faster

186 years of “Oersted switching”…. How can we switch faster ?

Faster than 100 ps…. Mechanisms of ultrafast transfer of energy and angular momentum Optical pulse Most direct way: Oersted switching Precessional or ballistic switching Exchange switching (spin injection) Shockwave IR or THz pulse ElectronsPhonons Spin  ~ 1 ps  = ?  ~ 100 ps

Precessional or ballistic switching: Discovery

Creation of large, ultrafast magnetic fields Conventional method - too slow Ultrafast pulse – use electron accelerator C. H. Back et al., Science 285, 864 (1999)

Torques on in-plane magnetization by beam field Max. torque Min. torque Initial magnetization of sample Fast switching occurs when H M ┴

Precessional or ballistic switching: 1999 Patent issued December 21, 2000: R. Allenspach, Ch. Back and H. C. Siegmann

Precessional switching case 1: Perpendicular anisotropy sample I. Tudosa, C. Stamm, A.B. Kashuba, F. King, H.C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller Nature 428, 831 (2004)

End of field pulse M The simplest case: perpendicular magnetic medium

Pattern of perpendicular anisotropy sample CoCrPt perpendicular recording media (Seagate)

Multiple shot switching of perpendicular sample Dark areas mean M Light areas mean M Tudosa et al., Nature 428, 831 (2004) CoCrPt recording film

Landau-Lifshitz- Gilbert theory Experiment 1 = white 0 = gray -1 = dark Intensity profiles thru images 1 shot 2 shots 6 shots 7 shots curve = M 1 curve = (M 1 ) 3 curve = (M 1 ) 7 curve = (M 1 ) 5 curve = (M 1 ) 2 curve = (M 1 ) 4 curve = (M 1 ) 6 Data analysis Landau-Lifshitz- Gilbert theory Experiment 3 shots 5 shots 4 shots Multiplicative probabilities are signature of a random variable. Analysis reveals a memory-less process.

Magnetization fracture under ultrafast field pulse excitation Non-deterministic region partly due to fractured magnetization

Magnetization fracture under ultrafast field pulse excitation Macro-spin approximation uniform precession Magnetization fracture moment de-phasing Breakdown of the macro-spin approximation Tudosa et al., Nature 428, 831 (2004)

Precessional switching case 2: In-plane anisotropy sample C. Stamm, I. Tudosa, H.C. Siegmann, J. J. Stöhr, A. Yu. Dobin, G. Woltersdorf, B. Heinrich and A. Vaterlaus Phys. Rev. Lett. 94, (2005)

In-Plane Magnetization: Pattern development Magnetic field intensity is large Precisely known field size 540 o 360 o 180 o 720 o Rotation angles:

Origin of observed switching pattern In macrospin approximation, line positions depend on: angle  = B  in-plane anisotropy K u out-of-plane anisotropy K ┴ LLG damping parameter   from FMR data H increases 15 layers of Fe/GaAs(110)

Breakdown of the Macrospin Approximation H increases With increasing field, deposited energy far exceeds macrospin approximation this energy is due to increased dissipation or spin wave excitation

Breakdown of the macrospin approximation: why? Experiments reveal breakdown for short pulse length  and large B peak power deposition ~ B 2 /  =  B /  2 Breakdown appears to be caused by peak power induced fracture of magnetization – non-linear excitations of spin system

Conclusions The breakdown of the macrospin approximation for fast field pulses limits the reliability of magnetic switching Breakdown is believed to arise from energy & angular momentum transfer within the spin system – excitation of higher spin wave modes Details are not well understood…. For more, see: and J. Stöhr and H. C. Siegmann Magnetism: From Fundamentals to Nanoscale Dynamics 800+ page textbook ( Springer, to be published in Spring 2006 )