Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud.

Slides:



Advertisements
Similar presentations
Turbulent transport of magnetic fields Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical.
Advertisements

Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
B. DUBRULLE CNRS, Groupe instabilité et Turbulence
Two scale modeling of superfluid turbulence Tomasz Lipniacki
Stellarator in a Box: Understanding ITG turbulence in stellarator geometries G. G. Plunk, IPP Greifswald Collaborators: T. Bird, J. Connor, P. Helander,
INI 2004 Astrophysical dynamos Fausto Cattaneo Center for Magnetic Self-Organization Computations Institute Department of Mathematics.
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
September, Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.
Physical-Space Decimation and Constrained Large Eddy Simulation Shiyi Chen College of Engineering, Peking University Johns Hopkins University Collaborator:
Stochastic theory of nonlinear auto-oscillator: Spin-torque nano-oscillator Vasil Tiberkevich Department of Physics, Oakland University, Rochester, MI,
Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
On-Off Intermittency and Criticality in Early Stage Electromigration Wouter Arts Peter Koelman.
Dresden, May 2010 Introduction to turbulence theory Gregory Falkovich
New Mechanism of Generation of Large-Scale Magnetic Field in Turbulence with Large-Scale Velocity Shear I. ROGACHEVSKII, N. KLEEORIN, E. LIVERTS Ben-Gurion.
Statistical approach of Turbulence R. Monchaux N. Leprovost, F. Ravelet, P-H. Chavanis*, B. Dubrulle, F. Daviaud and A. Chiffaudel GIT-SPEC, Gif sur Yvette.
Numerical simulations of the MRI: the effects of dissipation coefficients S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP,
VKS collaboration: CEA - CNRS - ENS Lyon - ENS Paris 26th June - 1st July, 2006Warwick, UK MHD results in a liquid sodium turbulent flow: the VKS experiment.
Multifractal acceleration statistics in turbulence Benjamin Devenish Met Office, University of Rome L. Biferale, G. Boffetta, A. Celani, A.Lanotte, F.
Statistics of Lorenz force in kinematic stage of magnetic dynamo at large Prandtle number S.S.Vergeles Landau Institute for Theoretical Physics in collaboration.
Plasma Dynamos UCLA January 5th 2009 Steve Cowley, UKAEA Culham and Imperial Thanks to Alex Schekochihin, Russell Kulsrud, Greg Hammett and Mark Rosin.
A LES-LANGEVIN MODEL B. Dubrulle Groupe Instabilite et Turbulence CEA Saclay Colls: R. Dolganov and J-P Laval N. Kevlahan E.-J. Kim F. Hersant J. Mc Williams.
Torino, October 27, 2009 CNRS – UNIVERSITE et INSA de Rouen Axisymmetric description of the scale-by-scale scalar transport Luminita Danaila Context: ANR.
FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.
Reversing chaos Boris Fine Skolkovo Institute of Science and Technology University of Heidelberg.
THEORETICAL AND EXPERIMENTAL MODELLING OF INTENSIVE ATMOSPHERIC VORTICES Galina Levina 1,2 1 Institute of Continuous Media Mechanics UB RAS, Perm 2 Space.
Stochastic Structural Dynamics and Some Recent Developments Y. K. Lin Center for Applied Stochastics Research Florida Atlantic University Boca Raton, FL.
Origin, Evolution, and Signatures of Cosmological Magnetic Fields, Nordita, June 2015 Evolution of magnetic fields in large scale anisotropic MHD flows.
Modelling of the particle suspension in turbulent pipe flow
0 Local and nonlocal conditional strain rates along gradient trajectories from various scalar fields in turbulence Lipo Wang Institut für Technische Verbrennung.
Ye Zhao, Zhi Yuan and Fan Chen Kent State University, Ohio, USA.
Experimental Study of Mixing at the External Boundary of a Submerged Turbulent Jet A. Eidelman, T. Elperin, N.Kleeorin, G.Hazak, I.Rogachevskii, S.Rudykh,
Simulations of Compressible MHD Turbulence in Molecular Clouds Lucy Liuxuan Zhang, CITA / University of Toronto, Chris Matzner,
Effect of Magnetic Helicity on Non-Helical Turbulent Dynamos N. KLEEORIN and I. ROGACHEVSKII Ben-Gurion University of the Negev, Beer Sheva, ISRAEL.
Lower-branch travelling waves and transition to turbulence in pipe flow Dr Yohann Duguet, Linné Flow Centre, KTH, Stockholm, Sweden, formerly : School.
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
POWER LAWS and VORTICAL STRUCTURES P. Orlandi G.F. Carnevale, S. Pirozzoli Universita' di Roma “La Sapienza” Italy.
Introduction 1. Similarity 1.1. Mechanism and mathematical description 1.2. Generalized variables 1.3. Qualitative analysis 1.4. Generalized individual.
ON MULTISCALE THEORY OF TURBULENCE IN WAVELET REPRESENTATION M.V.Altaisky
Numerical simulations of thermal counterflow in the presence of solid boundaries Andrew Baggaley Jason Laurie Weizmann Institute Sylvain Laizet Imperial.
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Turbulent Dynamo Stanislav Boldyrev (Wisconsin-Madison) Fausto Cattaneo (Chicago) Center for Magnetic Self-Organization in Laboratory and Astrophysical.
Session 3, Unit 5 Dispersion Modeling. The Box Model Description and assumption Box model For line source with line strength of Q L Example.
Box Model: Core Evolution ~ 700 Myr T(r,t) C(r,t) r ICB (t) 3D Model: Numerical Dynamo ~ 5 Myr intervals T(x,t) C(x,t) B(x,t) T(x,t) C(x,t) B(x,t) Thermodynamic.
I m going to talk about my work in last 2 years
Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data Cheng-chin.
12th European Turbulence Conference Linear generation of multiple time scales by three-dimensional unstable perturbations S. Scarsoglio #, D.Tordella #
The Stability of Laminar Flows - 2
Numerical study of flow instability between two cylinders in 2D case V. V. Denisenko Institute for Aided Design RAS.
ENS MHD induction & dynamo LYON Laboratoire de Physique
The Stability of Laminar Flows
Problem 14 Magnetic Spring Reporter: Hsieh, Tsung-Lin.
Reynolds Stress Constrained Multiscale Large Eddy Simulation for Wall-Bounded Turbulence Shiyi Chen Yipeng Shi, Zuoli Xiao, Suyang Pei, Jianchun Wang,
Scales of Motion, Reynolds averaging September 22.
Transition to Tubulence in the Hartmann Layer A. Thess 1, D.Krasnov 1, E. Zienicke 1, O. Zikanov 2, T. Boeck 3 1-Ilmenau University of Technology 2-University.
Turbulent transport coefficients from numerical experiments Axel Brandenburg & Matthias Rheinhardt (Nordita, Stockholm) Extracting concepts from grand.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
Arthur Straube PATTERNS IN CHAOTICALLY MIXING FLUID FLOWS Department of Physics, University of Potsdam, Germany COLLABORATION: A. Pikovsky, M. Abel URL:
INI 2004 Small-scale dynamos Fausto Cattaneo Department of Mathematics University of Chicago.
Thermal explosion of particles with internal heat generation in turbulent temperature of surrounding fluid Igor Derevich, Vladimir Mordkovich, Daria Galdina.
Turbulent Fluid Flow daVinci [1510].
An overview of turbulent transport in tokamaks
Numerical Investigation of Turbulent Flows Using k-epsilon
Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Intermittency and clustering in a system of self-driven particles
Fluid Dynamic Analysis of Wind Turbine Wakes
The Effects of Magnetic Prandtl Number On MHD Turbulence
Presentation transcript:

Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Basic equations Maxwell equations Navier-Stokes equations Field strectching Field diffusion Competition characterized by magnetic Reynolds number Dynamo if Rm > Rmc (Instability)

« Classical dynamo » paradigm Pas dynamo Dynamo Em t t Rmc Rm No dynamo Dynamo Indicator:

Dynamos in the Universe Def: Magnetic field generation through movement of a conductor In the universe…. stars, galaxies planets Control Parameters:

Problem Turbulent flow: Multiplicative noise Classical linear instability Mean Flow Fluctuation

« Classical turbulence » paradigm Mean Field argument: Mean Field equation: Mean Field dispersion: Mean Field instability: Turbulence creates dynamo « most of the time » « Helical turbulence is good for dynamo »

Numerical test ? Schekochihin et al, 2004 Ponty et al, 2005, 2006 Laval et al, 2006 Re Rm Pm=1 Whithout mean velocityWith mean-velocity

*Karlsruhe Experimental test ?

Dynamos with low “unstationarity”: success Riga Karlsruhe R Stieglitz, U. Müller, Phys.of Fluids,2001A. Gailitis et al., Phys. Rev. Lett., 2001

Experiments with unstationarity… “TM60”, no dynamoField “TM28”, dynamo No dynamo Dynamo VKS Experiment Sodium Measure Optimisation Kinematic code

…Failure!

Turbulence increases threshold With respect to time-averaged! Explanation: numerics Simulation with time averaged velocity Simulation with real velocity

Explanation: theory Kraichnan model Mean Field Theorie Perturbative computation (Petrelis, Fauve) ( =0) (with mean velocity fiel) ( =0) Dynamo only for Who is right ??????

Importance of the order parameter MFT, Petrelis, Fauve: transition over KM : transition over =0… No dynamo (MFT, Petrelis) non zero…Dynamo (KM) Vote: What is good order parameter?

Problem Turbulent flow: Multiplicative noise Classical linear instability Mean Flow Fluctuation

Troubles Model equation: Problem: how to define threshold? Instability threshold depends on moment order!!! Etc, etc... Solution: work with PDF and Lyapunov exponent

Stochastic approach Basic Equations Approximation 1 Approximation 2 Noise delta-correlated in timeMean Flow

Fokker-Planck Equation with Equation for P(B,x,t)

Mean-Field Equation beta effect (turbulent diffusion) Alpha effect Helicity if isotropy Mean Field Theory Equation Stability governed by alpha et beta….!!!???

Isotropic case Mean Field Magnetic energy

Stationary solutions Always solution! Other solution: Z: normalization D: space dimension a et  : coefficients Lyapunov exponent!

Bifurcations Non-zero Solution (normalisation)Most probable value  0aD No dynamo Intermittent Dynamo Turbulent Dynamo

New theoretical turbulent paradigm Rm Rm1Rm2 No dynamo Intermittent Dynamo Turbulent Dynamo Pas dynamo Dynamo Em t t Rmc Turbulent Laminar Rm

The Lyapunov exponent… Orientation (<0) (zero if =0) >0 and proportional to noise ( KM effect) Unstable Direction Rmc Expected result Stable Direction Noise intensity Rmc Leprovost, Dubrulle, EPJB 2005

Illustration: Bullard Homopolar Dynamo Noise intensity Intermittent Dynamo No Dynamo Leprovost, PhD thesis

Discussion Noise influences threshold through mu AND vector orientation Influence of alpha and beta through vector orientation Threshold different from Mean Field Theory prediction Dangerous to optimize dynamo experiments from mean field! Turbulent threshold can be very different from « laminar » ones

Simulations Time-average of velocity field computed through Navier-Stokes Type of simulation MHD-DNS Kinematic Noisy Computed through NS 0 Markovian noise (F,tc, ki)

Numerical code Spectral method Integration scheme: Adams-Brashford Resolution: 64*64*64 to 256*256*256 Forcing with Taylor-Green vortex Constant velocity forcing Cf Ponty et al, 2004, 2005

Time-averaged vs real dynamo Laval, Blaineau, Leprovost, Dubrulle, FD: PRL dynamo windows

Results for noisy delta-correlated Forcing at ki=1 Forcing at ki=16 Linear in (  -1) (Fauve-Petrelis)

Results for noisy tc=0.1 Forcing at ki=1 Forcing at ki=16

Results for noisy tc=1 s Forcing at ki=1

Summary of noisy ki=1 ki=16 DNS Tc=1 Compa DNS Stochastic noise k=1 Tauc=1 s Summary of noisy simulations

Interpretation   Kinetic energy of of the Velocity Fluid Rm* Rm Universal curve

In VKS  =30  =0.97 Definition of a universal « control parameter »

Comparison stochastic/DNS Compa DNS Stochastic noise k=1 Tauc=1 s Summary of noisy simulations Tauc ki=1 ki=16

Comparison DNS and mean flow Laval, Blaineau, Leprovost, Dubrulle, Daviaud (2005) Dynamo CM No dynamo Intermittent Dynamo

Conclusions In Taylor-Green, turbulence is not favourable to dynamo Large scale turbulence (unstationarity) increases dynamo threshold -> desorientation effect Small scale turbulence decreases dynamo threshold-> « friction » Turbulence looks like a large scale noise Bad influence through desorientation effect Possible transition to dynamo via intermittent scenario In natural objects: importance of Coriolis force (kills large-scale) Possibility of stochastic simulations to replace DNS