Chapter 8 Introduction to Hypothesis Testing

Slides:



Advertisements
Similar presentations
Hypothesis Testing A hypothesis is a claim or statement about a property of a population (in our case, about the mean or a proportion of the population)
Advertisements

Chapter 9 Introduction to Hypothesis Testing
Chap 9-1 Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall Basic Business Statistics 12 th Edition Chapter 9 Fundamentals of Hypothesis.
Introduction to Hypothesis Testing
© 2001 Prentice-Hall, Inc.Chap 9-1 BA 201 Lecture 15 Test for Population Mean Known.
Fundamentals of Hypothesis Testing. Identify the Population Assume the population mean TV sets is 3. (Null Hypothesis) REJECT Compute the Sample Mean.
1/55 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 10 Hypothesis Testing.
Introduction to Hypothesis Testing
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 9-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 9-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 8 Introduction to Hypothesis Testing.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Basic Business Statistics.
Chapter 10 Hypothesis Testing
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 9 Hypothesis Testing: Single.
9-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Statistics for Managers using Microsoft Excel 6 th Edition Chapter 9 Fundamentals.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics.
Chapter 9 Hypothesis Testing.
Ch. 9 Fundamental of Hypothesis Testing
Chapter 8 Introduction to Hypothesis Testing
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 TUTORIAL 6 Chapter 10 Hypothesis Testing.
© 1999 Prentice-Hall, Inc. Chap Chapter Topics Hypothesis Testing Methodology Z Test for the Mean (  Known) p-Value Approach to Hypothesis Testing.
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 10 Hypothesis Testing
Confidence Intervals and Hypothesis Testing - II
CHAPTER 2 Statistical Inference 2.1 Estimation  Confidence Interval Estimation for Mean and Proportion  Determining Sample Size 2.2 Hypothesis Testing:
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Business Statistics,
© 2002 Prentice-Hall, Inc.Chap 7-1 Statistics for Managers using Excel 3 rd Edition Chapter 7 Fundamentals of Hypothesis Testing: One-Sample Tests.
© 2003 Prentice-Hall, Inc.Chap 9-1 Fundamentals of Hypothesis Testing: One-Sample Tests IE 340/440 PROCESS IMPROVEMENT THROUGH PLANNED EXPERIMENTATION.
Chapter 8 Hypothesis Testing (假设检验)
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 9 Hypothesis Testing: Single.
Fundamentals of Hypothesis Testing: One-Sample Tests
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Introduction to Hypothesis Testing.
Week 8 Fundamentals of Hypothesis Testing: One-Sample Tests
Chapter 9 Hypothesis Testing: Single Population
Chapter 10 Hypothesis Testing
Fundamentals of Hypothesis Testing: One-Sample Tests İŞL 276.
© 2003 Prentice-Hall, Inc.Chap 7-1 Business Statistics: A First Course (3 rd Edition) Chapter 7 Fundamentals of Hypothesis Testing: One-Sample Tests.
1 Introduction to Hypothesis Testing. 2 What is a Hypothesis? A hypothesis is a claim A hypothesis is a claim (assumption) about a population parameter:
Lecture 7 Introduction to Hypothesis Testing. Lecture Goals After completing this lecture, you should be able to: Formulate null and alternative hypotheses.
Introduction to Hypothesis Testing: One Population Value Chapter 8 Handout.
Statistical Inference
Testing of Hypothesis Fundamentals of Hypothesis.
Topic 8 Hypothesis Testing Mathematics & Statistics Statistics.
Copyright ©2011 Pearson Education 9-1 Statistics for Managers using Microsoft Excel 6 th Global Edition Chapter 9 Fundamentals of Hypothesis Testing: One-Sample.
© 2002 Prentice-Hall, Inc.Chap 7-1 Business Statistics: A First course 4th Edition Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests.
Statistics for Managers 5th Edition Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests.
Chapter 8 Introduction to Hypothesis Testing ©. Chapter 8 - Chapter Outcomes After studying the material in this chapter, you should be able to: 4 Formulate.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics.
Chap 8-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 8 Introduction to Hypothesis.
Lecture 9 Chap 9-1 Chapter 2b Fundamentals of Hypothesis Testing: One-Sample Tests.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall 9-1 σ σ.
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Basic Business Statistics.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Business Statistics,
© 2004 Prentice-Hall, Inc.Chap 9-1 Basic Business Statistics (9 th Edition) Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests.
Chapter 8 Hypothesis Testing (假设检验)
Applied Quantitative Analysis and Practices LECTURE#14 By Dr. Osman Sadiq Paracha.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 9 Hypothesis Testing: Single.
4-1 Statistical Inference Statistical inference is to make decisions or draw conclusions about a population using the information contained in a sample.
Chap 9-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Business Statistics: A First Course 6 th Edition Chapter 9 Fundamentals of.
Conceptual Foundations © 2008 Pearson Education Australia Lecture slides for this course are based on teaching materials provided/referred by: (1) Statistics.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 9 Hypothesis Testing: Single.
Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests
Chapter 10 Hypothesis Testing
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 9 Hypothesis Testing: Single Population
اختبار الفرضيات اختبارالفرضيات المتعلقة بالوسط
Chapter 9 Hypothesis Testing: Single Population
Chapter 9 Hypothesis Testing: Single Population
Presentation transcript:

Chapter 8 Introduction to Hypothesis Testing Business Statistics: A Decision-Making Approach 6th Edition Chapter 8 Introduction to Hypothesis Testing Murali Shanker – Fundamentals of Business Statisitcs

Chapter Goals After completing this chapter, you should be able to: Formulate null and alternative hypotheses for applications involving a single population mean or proportion Formulate a decision rule for testing a hypothesis Know how to use the test statistic, critical value, and p-value approaches to test the null hypothesis Murali Shanker – Fundamentals of Business Statisitcs

Testing Theories Hypotheses Competing theories that we want to test about a population are called Hypotheses in statistics. Specifically, we label these competing theories as Null Hypothesis (H0) and Alternative Hypothesis (H1 or HA). H0 : The null hypothesis is the status quo or the prevailing viewpoint. HA : The alternative hypothesis is the competing belief. It is the statement that the researcher is hoping to prove. Murali Shanker – Fundamentals of Business Statisitcs

The Null Hypothesis, H0 (continued) Begin with the assumption that the null hypothesis is true Refers to the status quo Always contains “=” , “≤” or “” sign May or may not be rejected Murali Shanker – Fundamentals of Business Statisitcs

The Alternative Hypothesis, HA Challenges the status quo Never contains the “=” , “≤” or “” sign Is generally the hypothesis that is believed (or needs to be supported) by the researcher Provides the “direction of extreme” Murali Shanker – Fundamentals of Business Statisitcs

Hypothesis Testing Process Claim: the population mean age is 50. (Null Hypothesis: Population H0:  = 50 ) Now select a random sample x Is = 20 likely if  = 50? Suppose the sample If not likely, REJECT mean age is 20: x = 20 Sample Null Hypothesis Murali Shanker – Fundamentals of Business Statisitcs

Deciding Which Theory to Support Decision making is based on the “rare event” concept. Since the null hypothesis is the status quo, we assume that it is true unless the observed result is extremely unlikely (rare) under the null hypothesis. Definition: If the data were indeed unlikely to be observed under the assumption that H0 is true, and therefore we reject H0 in favor of HA, then we say that the data are statistically significant. Murali Shanker – Fundamentals of Business Statisitcs

Reason for Rejecting H0 Sampling Distribution of x  = 50 x If H0 is true Murali Shanker – Fundamentals of Business Statisitcs

Level of Significance,  Defines unlikely values of sample statistic if null hypothesis is true Defines rejection region of the sampling distribution Is designated by  , (level of significance) Is selected by the researcher at the beginning Provides the critical value(s) of the test Murali Shanker – Fundamentals of Business Statisitcs

Level of Significance and the Rejection Region Represents critical value H0: μ ≥ 3 HA: μ < 3 a Rejection region is shaded Lower tail test H0: μ ≤ 3 HA: μ > 3 a Upper tail test H0: μ = 3 HA: μ ≠ 3 a a /2 /2 Two tailed test Murali Shanker – Fundamentals of Business Statisitcs

Critical Value Approach to Testing Convert sample statistic (e.g.: ) to test statistic ( Z* or t* statistic ) Determine the critical value(s) for a specified level of significance  from a table or computer If the test statistic falls in the rejection region, reject H0 ; otherwise do not reject H0 Murali Shanker – Fundamentals of Business Statisitcs

Critical Value Approach to Testing Convert sample statistic ( ) to a test statistic ( Z* or t* statistic ) x Is X ~ N? Sample Size? Yes No Small Large Is s known? Yes No 2. Use T~t(n-1) 1. Use Z~N(0,1)

Calculating the Test Statistic Z Test Statistic Two-Sided: H0 : μ = μ0 ; HA : μ ≠ μ0 Reject H0 if Z* > Z(1−α/2) or Z* < −Z(1−α/2), otherwise do not reject H0 One-Sided Upper Tail: H0 : μ ≤ μ0 ; HA : μ > μ0 Reject H0 if Z* > Z(1−α), otherwise do not reject H0 One-Sided Lower Tail: H0 : μ ≥ μ0 ; HA : μ < μ0 Reject H0 if Z* < -Z(1−α), otherwise do not reject H0 T test Statistic Reject H0 if , otherwise do not reject H0 Reject H0 if , otherwise do not reject H0 Murali Shanker – Fundamentals of Business Statisitcs

Review: Steps in Hypothesis Testing Specify the population value of interest Formulate the appropriate null and alternative hypotheses Specify the desired level of significance Determine the rejection region Obtain sample evidence and compute the test statistic Reach a decision and interpret the result Murali Shanker – Fundamentals of Business Statisitcs

Hypothesis Testing Example Test the claim that the true mean # of TV sets in US homes is at least 3. Assume that s = 0.8 Specify the population value of interest Formulate the appropriate null and alternative hypotheses Specify the desired level of significance

Hypothesis Testing Example (continued) 4. Determine the rejection region  = Reject H0 Do not reject H0 Reject H0 if Z* test statistic < otherwise do not reject H0 Murali Shanker – Fundamentals of Business Statisitcs

Hypothesis Testing Example 5. Obtain sample evidence and compute the test statistic Suppose a sample is taken with the following results: n = 100, x = 2.84 ( = 0.8 is assumed known) Then the test statistic is: Murali Shanker – Fundamentals of Business Statisitcs

Hypothesis Testing Example (continued) 6. Reach a decision and interpret the result  = z Reject H0 Do not reject H0 Since Z* = -2.0 < , Murali Shanker – Fundamentals of Business Statisitcs

p-Value Approach to Testing p-value: Probability of obtaining a test statistic more extreme than the observed sample value given H0 is true Also called observed level of significance Smallest value of  for which H0 can be rejected Murali Shanker – Fundamentals of Business Statisitcs

p-Value Approach to Testing Convert Sample Statistic to Test Statistic ( Z* or t* statistic ) Obtain the p-value from a table or computer Compare the p-value with  If p-value <  , reject H0 If p-value   , do not reject H0 Murali Shanker – Fundamentals of Business Statisitcs

P-Value Calculation Z test statistic Two-Sided: 2 ×min {P(Z ≥ Z*,Z ≤ Z*)} One-Sided Upper Tail P(Z ≥ Z*) One-Sided Lower Tail P(Z ≤ Z*) T test statistic Two-Sided: 2 ×min {P(t ≥ t*,t ≤ t*)} One-Sided Upper Tail P(t ≥ t*) One-Sided Lower Tail P(t ≤ t*) Murali Shanker – Fundamentals of Business Statisitcs

p-value example Example: How likely is it to see a sample mean of 2.84 (or something further below the mean) if the true mean is  = 3.0? p-value = x 3 2.84 Murali Shanker – Fundamentals of Business Statisitcs

p-value example Compare the p-value with  (continued) Compare the p-value with  If p-value <  , reject H0 If p-value   , do not reject H0 p-value =.0228 3 2.84 Murali Shanker – Fundamentals of Business Statisitcs

Example: Upper Tail z Test for Mean ( Known) A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over $52 per month. The company wishes to test this claim. (Assume  = 10 is known) Form hypothesis test: H0: μ ≤ 52 the average is not over $52 per month HA: μ > 52 the average is greater than $52 per month (i.e., sufficient evidence exists to support the manager’s claim) Murali Shanker – Fundamentals of Business Statisitcs

Example: Find Rejection Region (continued) Reject H0  = Do not reject H0 Reject H0 Murali Shanker – Fundamentals of Business Statisitcs

Example: Test Statistic (continued) Obtain sample evidence and compute the test statistic Suppose a sample is taken with the following results: n = 64, x = 53.1 (=10 was assumed known) Then the test statistic is: Murali Shanker – Fundamentals of Business Statisitcs

Example: Decision Reach a decision and interpret the result:  = (continued) Reach a decision and interpret the result: Reject H0  = Do not reject H0 Reject H0 Murali Shanker – Fundamentals of Business Statisitcs

p -Value Solution Calculate the p-value and compare to  (continued) Do not reject H0 Reject H0 Murali Shanker – Fundamentals of Business Statisitcs

Example: Two-Tail Test ( Unknown) The average cost of a hotel room in New York is said to be $168 per night. A random sample of 25 hotels resulted in x = $172.50 and s = $15.40. Test at the  = 0.05 level. (Assume the population distribution is normal) H0: μ = 168 HA: μ ¹ 168 Murali Shanker – Fundamentals of Business Statisitcs

Outcomes and Probabilities Possible Hypothesis Test Outcomes State of Nature Decision H0 True H0 False Do Not No error (1 - ) Type II Error ( β ) Reject Key: Outcome (Probability) a H Reject Type I Error ( ) No Error ( 1 - β ) H a Murali Shanker – Fundamentals of Business Statisitcs