CSE 246: Computer Arithmetic Algorithms and Hardware Design Instructor: Prof. Chung-Kuan Cheng Winter 2004 Lecture 11 Tuesday, February 24, 2004
Project IEEE Computer Society Author Kit (≤5Pages) Introduction Statement of Problem Approaches Examples Experiments Conclusion 30 Minutes
Project Presentation Schedule WeekTuesdayThursday 8Today 9Kumar Jeremy Mohsen 10Thomas John Shu Hu Patrick Allen Alex Jodin
Cordic Algorithms Coordinate Rotations Digital Computer Rotate vector (x,y) to (x’,y’) α (x’,y’) (x,y)
Cordic Algorithms
Key: Given cos α, sin α, tan α we can derive Cordic Algorithms iαiαi
Find Cordic Algorithms (Example)
Cordic Algorithms
Logarithms – Method 1 Find
Logarithms – Method 1 I. II. III. A table of
Logarithms – Method 1 (Example) Find ln(x), x = = _ x _ _ x _
Logarithms – Method 1 (Example) -ln x = (1.-1) + ln(1.01) + ln( )
Logarithms – Method 2 Let define Initially x<2, ie. y 0 =0 If
Logarithms – Method 2 for i = 1 to l do x = x 2 if x ≥ 2 then y i = 1 x = x/2 else y i = 0
Logarithms – Method 2 (Example) x x __ y 1 = 1 x 2 / x _ y 2 = 1 Find ln 2 (x), x = 1.11 (1.75)
Logarithms – Method 2 (Example) (x 2 /2) 2 /2 = y 3 = 0 ln ≈ 0.110
Squarer x3 x2 x1 x0 X x3 x2 x1 x0 x3x0 x2x0 x1x0 x0x0 x3x1 x2x1 x1x1 x0x1 x3x2 x2x2 x1x2 x0x2 + x3x3 x2x3 x1x3 x0x3 _ x3x2 x3x1 x3x0 x2x0 x1x0 x0 x3 x2x1 x1 + x2 _
Exponentiation e x
I. II. min: max: