Oculus Superne 1 1.) Introduction 2.) Mission & Market 3.) Operations

Slides:



Advertisements
Similar presentations
Lecture 3: Take-off Performance
Advertisements

College of Engineering and Computer Science Department of Mechanical and Materials Engineering Wright State University Regular Class Aircraft SAE Aero.
Group 3 Heavy Lift Cargo Plane
SAE Aero Design ® East 2005 University of Cincinnati AeroCats Team #039 SAE Aero Design ® East 2005 University of Cincinnati AeroCats Team #039 Design.
Daniel Graves –Project Lead James Reepmeyer – Lead Engineer Brian Smaszcz– Airframe Design Alex Funiciello – Airfoil Design Michael Hardbarger – Control.
6th grade Springton Lake
Short Field Takeoff & Landing
October 28, 2011 Christopher Schumacher (Team Lead) Brian Douglas Christopher Erickson Brad Lester Nathan Love Patrick Mischke Traci Moe Vince Zander.
ME 480 Introduction To Aerospace: Chapter 2 Prof. Doug Cairns.
The Black Pearl Design Team: Ryan Cobb Jacob Conger Christopher Cottingham Travis Douville Josh Johnson Adam Loverro Tony Maloney.
Predicting Performance
System Definition Review AAE 451 Andrew Mizener Diane Barney Jon Coughlin Jared ScheidMark Glover Michael CoffeyDonald Barrett Eric SmithKevin Lincoln.
JLFANG-LDS Light Dynamic Strikefighter Dr. James Lang, Project Advisor Aircraft Design by Team Bling-Bling Marcus Artates Connor McCarthy Ryan McDonnell.
Project Presentation Boiler Xpress December 5, 2000 Team Members Oneeb Bhutta Matthew Basiletti Ryan Beech Micheal Van Meter AAE 451 Aircraft Design.
AME 441: Conceptual Design Presentation
Dane BatemaBenoit Blier Drew Capps Patricia Roman Kyle Ryan Audrey Serra John TapeeCarlos Vergara Critical Design Review Team 1.
Oculus Superne. 2 System Definition Review Mission Objectives Concept of Operations Aircraft Concept Selection Payload Constraint Analysis and Diagrams.
Click to edit Master title style Click to edit Master text styles Second level Third level Fourth level Fifth level 1.
The Barn Owls Chris “Mo” Baughman Kate Brennan Christine Izuo Dan Masse Joe “Sal” Salerno Paul Slaboch Michelle Smith.
Request for Proposal: Joint Strike Fighter for Australian Air Force JLFANG Black Knight 170 Aerospace Engineering Design I University of California, San.
Propulsion QDR #2 AAE451 – Team 3 November 20, 2003 Brian Chesko Brian Hronchek Ted Light Doug Mousseau Brent Robbins Emil Tchilian.
1 Oculus Superne AAE 451 Team 2. 2 System Requirement Review Mission Overview Business Plan Customer Requirements Concept of Operations.
Click to edit Master title style Click to edit Master text styles Second level Third level Fourth level Fifth level 1.
Group 3 Heavy Lift Cargo Plane
Soft Field Takeoff and Landing. Soft Field Takeoff w Before landing, will you be able to take off? w Complex and high performance aircraft often have.
AAE 451 SPRING 2007 SYSTEMS REQUIREMENTS REVIEW TEAM 4: Kevin Kwan Dan Pothala Mohammad A. Rahim Nicole Risley Sara Tassan John Thornton Sean Woock Alvin.
Review Chapter 12. Fundamental Flight Maneuvers Straight and Level Turns Climbs Descents.
Overview of Chapter 6 Douglas S. Cairns Lysle A. Wood Distinguished Professor.
Modern Equipment General Aviation (MEGA) Aircraft Progress Report Flavio Poehlmann-Martins & Probal Mitra January 11, 2002 MAE 439 Prof. R. Stengel Prof.
System Definition Review - AAE Team 5 March 27, 2007 Slide 1 System Definition Review Robert Aungst Chris Chown Matthew Gray Adrian Mazzarella Brian.
AE 1350 Lecture Notes #9.
PROPRIETARY James Bearman AJ Brinker Dean Bryson Brian Gershkoff Kuo Guo Joseph Henrich Aaron Smith Daedalus Aviation Conceptual Design Review: “The Daedalus.
AIAA Hybrid Airliner Competition 2013 The Transporters.
Team 5 Critical Design Review Trent Lobdell Ross May Maria Mullins Christian Naylor Eamonn Needler Charles Reyzer James Roesch Charles Stangle Nick White.
AEM 5333 UAV Search and Surveillance. Mission Description Overhead surveillance and tracking – Humans on foot – Moving vehicles Onboard GPS transceiver.
1 Conceptual Design Review 4/17/07 Team 1 John Horst John Horst Jared Odle Jared Odle Keith Fay Keith Fay Boyce Dauby Boyce Dauby Andrew Kovach Andrew.
1. Systems Design Review Presentation Joe Appel Todd Beeby Julie Douglas Konrad Habina Katie Irgens Jon Linsenmann David Lynch Dustin Truesdell 2.
Propulsion PDR #2 AAE451 – Team 3 November 11, 2003 Brian Chesko Brian Hronchek Ted Light Doug Mousseau Brent Robbins Emil Tchilian.
The Lumberjacks Team /16/12 Brian Martinez.
Doris Hamill UAV Business Development Lead NASA Langley Research Center and Hampton Roads First Responders.
HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug RohrbaughGregory Snyder Steve StanekVictor Thomas SAURON.
Design Chapter 8 First Half. Design Requirements and Specifications Payload Range Cruising Speed Takeoff & Landing Distance Ceiling.
Introduction to Control / Performance Flight.
DESIGN OF THE 1903 WRIGHT FLYER REPLICA MADRAS INSTITUE OF TECHNOLOGY CHENNAI - 44.
1. Mission Statement Design Requirements Aircraft Concept Selection Advanced Technologies / Concepts Engine / Propulsion Modeling Constraint Analysis.
1 Lecture 4: Aerodynamics Eric Loth For AE 440 A/C Lecture Sept 2009.
AAE 451 Aircraft Design First Flight Boiler Xpress November 21, 2000
Final Design Team 6 December 2 nd, UAV Team Specializations David Neira – Power & Propulsion Josiah Shearon – Materials Selection & Fabrication.
AAE 451 AERODYNAMICS PDR 2 TEAM 4 Jared Hutter, Andrew Faust, Matt Bagg, Tony Bradford, Arun Padmanabhan, Gerald Lo, Kelvin Seah November 18, 2003.
February 24, Dynamics & Controls 1 PDR Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason.
Theory of Flight All are demonstrated by the flight of the bird!
Introduction to Aerospace – Historical Perspective Dr. Doug Cairns.
System Definition Review 3/27/07 Team 1
AAE Team 1 - 2/20/07 System Requirements Review 2/20/07 Team 1 John Horst John Horst Jared Odle Jared Odle Keith Fay Keith Fay Boyce Dauby Boyce.
12/11/12 Brandon Campbell & Ernesto Chairez. Purpose  Civil Transport  Large Volume  Efficient  Quiet  Long Range.
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 4: Slide 1 Chapter 4 Forces and Moments.
Four Forces of Flight Lift Weight Thrust Drag
Aerospace System Prototyping and Validation- Lecture 2
DYNAMICS & CONTROL PDR 1 TEAM 4
Dynamics & Controls PDR 1
SAE AERO 2017 Joseph Zongolowicz, Kathy Hansen, Nick Montana, Marquis Ward, Frank Dixon, Thomas Houck, Gerald Short, Zhangsiwen Xiao, Kevin Schesventer,
SAE Heavy Lift Cargo Plane
Team 5 Final Design Review
Team 5 Final Design Review
Matching of Propulsion Systems for an Aircraft
AE 440 Performance Discipline Lecture 9
Aerodynamics PDR # 2 AAE451 – Team 3 November 18, 2003
Dynamics & Controls PDR 2
Extreme Altitude Mountain Rescue Vehicle
STRUCTURES & WEIGHTS QDR 1
Presentation transcript:

Oculus Superne 1 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Oculus Superne 1

CoDR Overview Introduction Mission Statement & Market Operations 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Introduction Mission Statement & Market Operations Walk Around Payload and Capabilities Aircraft Sizing Aerodynamics Stability/Trim Propulsion Structures Cost Analysis Summary 2

Mission Statement 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary To provide a multi-service UAS which acts as the primary detection method for third party infringement of pipelines, performs power-line equipment inspection, and detects threats to forested areas. The system will also facilitate a rapid response in the event of a complete system failure or natural disaster. 3

Target Market Mission Power Line Pipeline Forest Monitoring 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Mission Power Line Pipeline Forest Monitoring Business Plan Target Customers DOT NPS Private Oil/Gas Companies 4

Customer Attributes Patrolling the Right-of-Way Constant Coverage 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Patrolling the Right-of-Way Third Party Infringement Constant Coverage Cost Reduction Safety Factors 5

Engineering Requirements 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 6

Operation Profile Type of Equipment Ground Stations Relay Stations UAV 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Type of Equipment Ground Stations Relay Stations UAV Takeoff/Landing on Rough Airfield Operate from 1000 ft (AGL) Observe & Transmit to Local Relay Stations Relay Stations Transmit Information Back to Operator Number and Frequency of UAV Flight Completely Customer Defined 7

Walk Around 8 1.) Introduction 2.) Mission & Market 3.) Operations 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 8

Internal Walk Around 9 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 9

Sensors LIDAR (Laser Imaging Detection and Ranging) Corridor Mapping 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary LiteMapper 5600 components Airborne Lidar Terrain Mapping System LIDAR (Laser Imaging Detection and Ranging) Corridor Mapping Land Surveying Vegetation Growth / Density IR/Visual Camera - Thermal Imaging - Video Tracking - Detailed Pictures 10

Payload Requirements LIDAR Operates Optimally at 650-1300ft AGL 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary LIDAR Operates Optimally at 650-1300ft AGL Used Only During Inspection IR / Visual Camera Runs Throughout Mission @ 1000 ft AGL 271,212 ft2 @ 12 x Zoom 1462 ft2 11

Sizing Information and Assumptions 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Sizing Information and Assumptions Sizing Code: Avid ACS v4.1 Equation Sets General Aviation Component Weight Equations Tail Volume Coefficient Fixed Engine Weight Horsepower The engine parameters that were set were the weight and the horsepower of the off the shelf engine chosen. 12

Carpet Plot Constraints and Inputs 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Carpet Plot Constraints and Inputs Constraints 925 ft takeoff constraint (ground roll + 50 ft obstacle clearance) 550 ft landing constraint Stall speed, ceiling and 2g maneuver not influential [ft] MSL 13

Carpet Plot 14 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 14

Sizing Code Output 15 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 15

16 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 16

Compliance Matrix 17 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Compliance Matrix 17

Performance (ft MSL) 18 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary (ft MSL) 18

Lift Distribution Ideal Elliptical Lift (Too costly) 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Ideal Elliptical Lift (Too costly) Linear distribution cost effective Still gives acceptable performance (ft2/sec) 19

Airfoil selection Considered 3 airfoils Chose NLF-1015 NASA NLF-1015 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Considered 3 airfoils NASA NLF-1015 Liebeck LNV109a NACA 642-415 (baseline) Chose NLF-1015 Superior L/D at operating conditions (Low alpha) 20

Drag Buildup Component CD0 build for major components of aircraft 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Component CD0 build for major components of aircraft CD0 - parasite drag on the aircraft 21

1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Aerodynamic performance, lift, and drag from XFoil at Mach number for cruise 22

Longitudinal Stability Analysis 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Static margin for a fully loaded aircraft 34% Static margin with no fuel 41% Xcg .467 % CLα .14 Xac,wing .46 % Xac,ht .932% Cmα -.048 Static Margin .343 Some basic stability analysis has been done for this aircraft. (Percentages of Aircraft Length) 23

Cruise Trim: V = 100 kts, q = 32.46 => C_L = .4467 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Cruise Trim: V = 100 kts, q = 32.46 => C_L = .4467 24

Lateral Trim Crosswind correction Final sizes: 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Crosswind correction Capable of steady level flight in a crosswind that is 30% of takeoff speed at a 11.5o side slip angle with no more than 20o of rudder deflection. Final sizes: Rudder: cf/c = 0.8 Aileron: cf/c = 0.2 25

Engine Selection UAV Engines Ltd Model AR741 26 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary UAV Engines Ltd Model AR741 26

Propeller Selection Helices Halter 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Helices Halter Model HH yr7022fa Specifically designed for the AR741 Engine Fixed Pitch Beech Wood Composite This propeller is designed for this particular engine. [deg] 27

Material Selection Al-2024 for the fuselage and Al-7075 landing gear. 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Al-2024 for the fuselage and Al-7075 landing gear. Aluminum inexpensive, $3-4/lb Strong (E = 106 psi) and light Resists corrosion and has good fracture toughness properties AS4/3501 -6 Carbon Epoxy for the wing and tail skin Mechanics of Materials, James Gere 28

Weight Statement 29 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 29

Reliability and Maintainability 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Minimal Maneuvers Steady Static Margin Minimal Parts Non-retractable Landing Gear Few Payload Parts Highly Reliable Data from Sensors 30

Cost Analysis Life-Cycle 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Trans-Alaskan pipeline is 800 miles: Average mission is there and back (1600 miles) Average fuel price is ($1.80) Average wage is $20 an hour with 2 employees Production cost assumes at least 30 aircraft will be made in its life time RDTE cost of $993,000. Assuming Operating 10.7 hours a day for 360 days of the year. Modified around DAPCA IV Cost Model Scaled to a UAV application Analysis based off of Trans-Alaskan Pipeline Customer 31

Summary Future Work More Structural Analysis CFD Analysis 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Future Work More Structural Analysis CFD Analysis More Research In Operation Costs Feasibility 32

Questions? 33 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Questions? 33