16.360 Lecture 2 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.

Slides:



Advertisements
Similar presentations
ENE 428 Microwave Engineering
Advertisements

Lecture 7 Last lecture Standing wave Input impedance i(z) = V(z) = V 0 ( ) + +  e jzjz - e -j  z (e(e + V0V0 Z0Z0 e jzjz  ) |V(z)| = | V.
ENE 428 Microwave Engineering
EKT241 – ELECTROMAGNETICS THEORY
Chapter Fourteen: Transmission Lines
UNIVERSITI MALAYSIA PERLIS
UNIVERSITI MALAYSIA PERLIS
Design and Analysis of RF and Microwave Systems IMPEDANCE TRANSFORMERS AND TAPERS Lecturers: Lluís Pradell Francesc.
ELCT564 Spring /9/20151ELCT564 Chapter 2: Transmission Line Theory.
Chapter 2: Transmission Line Theory
By Professor Syed Idris Syed Hassan Sch of Elect. & Electron Eng Engineering Campus USM Nibong Tebal SPS Penang Microwave Circuit Design.
Lecture 12 Last lecture: impedance matching Vg(t) A’ A Tarnsmission line ZLZL Z0Z0 Z in Zg IiIi Matching network Z in = Z 0.
July, 2003© 2003 by H.L. Bertoni1 I. Introduction to Wave Propagation Waves on transmission lines Plane waves in one dimension Reflection and transmission.
Lecture 4 Last lecture: 1.Phasor 2.Electromagnetic spectrum 3.Transmission parameters equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t)
Lecture 6 Last lecture: Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission.
Electromagnetics (ENGR 367)
Lecture 3 Last lecture: Magnetic field by constant current r I B = 2r2r II    =  r  0,  r: relative magnetic permeability  r =1 for most.
Lecture 9 Last lecture Parameter equations input impedance.
Lecture 11 Today: impedance matcing Vg(t) A’ A Tarnsmission line ZLZL Z0Z0 Z in Zg IiIi Matching network Z in = Z 0.
Electromagnetics (ENGR 367) The Complete Sourced & Loaded T-line.
Lecture 9 Last lecture Power flow on transmission line.
LECTURE 2. IMPEDANCE MATCHING
Advanced Microwave Measurements
ENE 428 Microwave Engineering
1 ENE 429 Antenna and Transmission lines Theory Lecture 4 Transmission lines.
Lecture 4.  1.5 The terminated lossless transmission line What is a voltage reflection coefficient? Assume an incident wave ( ) generated from a source.
ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.
Transmission Lines Dr. Sandra Cruz-Pol ECE Dept. UPRM.
Chapter 2. Transmission Line Theory
Transmission Line Theory
10. Transmission Line 서강대학교 전자공학과 윤상원 교수
CHAPTER 4 TRANSMISSION LINES.
12 Transmission Lines.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Lossless Transmission Line If Then: All TEM, L’C’=µε Selected conductors: High conductivities Dielectric materials: negligible conductivities.
Lecture 9 Smith Chart Normalized admittance z and y are directly opposite each other on.
Lecture 12 Smith Chart & VSWR
1 RS ENE 428 Microwave Engineering Lecture 5 Discontinuities and the manipulation of transmission lines problems.
ELECTROMAGNETICS AND APPLICATIONS Lecture 11 RF & Microwave TEM Lines Luca Daniel.
Yi HUANG Department of Electrical Engineering & Electronics
1.  Transmission lines or T-lines are used to guide propagation of EM waves at high frequencies.  Examples: › Transmitter and antenna › Connections.
Lecture 4 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Microwave Engineering, 3rd Edition by David M. Pozar Copyright © 2004 John Wiley & Sons Figure 2.1 (p. 50) Voltage and current definitions and equivalent.
ENE 490 Applied Communication Systems
Lecture 3.
The Smith Chart Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission-line circuits Today, it is used to characterize.
ENE 428 Microwave Engineering
Chapter 2. Transmission Line Theory
Chapter 2 Transmission Line Theory (2.1 ~ 2.5) 전자파연구실 1.
Lecture 5 Last lecture: Transmission line parameters Types of transmission lines Lumped-element model Transmission line equations Telegrapher’s.
TRANSMISSION LINE EQUATIONS Transmission line is often schematically represented as a two-wire line. Figure 1: Voltage and current definitions. The transmission.
1.  Transmission lines or T-lines are used to guide propagation of EM waves at high frequencies.  Distances between devices are separated by much larger.
Chapter9 Theory and Applications of Transmission Lines.
1 John McCloskey NASA/GSFC Chief EMC Engineer Code 565 Building 23, room E Fundamentals of EMC Transmission Lines.
Chapter 2 Overview 1.
Figure 11.1 Figure 11.1 Basic transmission line circuit, showing voltage and current waves initiated by closing switch S 1.
Lab2: Smith Chart And Matching
Smith Chart & Matching Anurag Nigam.
Lecture 8 Last lecture short circuit line open circuit line
Applied EM by Ulaby, Michielssen and Ravaioli
Chapter 10. Transmission lines
Standing Wave Lecture 7 Voltage maximum
Non-ideal property – crosstalk
ENE 428 Microwave Engineering
Transmission lines II 1.
IMPEDANCE MATCHING & SMITH CHART
Microwave Engineering
Voltage Reflection Coefficient
4th Week Seminar Sunryul Kim Antennas & RF Devices Lab.
Presentation transcript:

Lecture 2 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient 4.Input impedence 5.Special cases of lossless line 6.Power flow 7.Smith chart 8.Impedence matching 9.Transients on transmission lines

Lecture 2 1.Transmission line parameters, equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V AA’ (t) = Vg(t) = V0cos(  t), V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/c) = V0cos(  (t-L/c)), V BB’ (t) = V AA’ (t) Low frequency circuits: Approximate result V BB’ (t) = V AA’ (t)

Lecture 2 1.Transmission line parameters, equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/c) = V0cos(  (t-L/c)) = V0cos(  t- 2  L/ ), Recall:  =c, and  = 2  If >>L, V BB’ (t)  V0cos(  t) = V AA’ (t), If <= L, V BB’ (t)  V AA’ (t), the circuit theory has to be replaced.

Lecture 2 1.Transmission line parameters, equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L  = 2  f  t = 0.06  e. g:  = 1GHz, L = 1cm Time delay  t = L/c = 1cm /3x10 10 cm/s = 30 ps Phase shift V BB’ (t) = V AA’ (t)  = 2  f  t = 0.6   = 10GHz, L = 1cm Time delay  t = L/c = 1cm /3x10 10 cm/s = 30 ps Phase shift V BB’ (t)  V AA’ (t)

Lecture 2 Transmission line parameters Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L time delay V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/v p ), Reflection: the voltage has to be treat as wave, some bounce back power loss: due to reflection and some other loss mechanism, Dispersion: in material, V p could be different for different wavelength

Lecture 2 Types of transmission lines Transverse electromagnetic (TEM) transmission lines B E E B a) Coaxial lineb) Two-wire linec) Parallel-plate line d) Strip linee) Microstrip line

Lecture 2 Types of transmission lines Higher-order transmission lines a) Optical fiber b) Rectangular waveguidec) Coplanar waveguide

Lecture 2 Lumped-element Model Represent transmission lines as parallel-wire configuration Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B zz zz zz Vg(t) R’  z L’  z G’  z C’  z R’  z L’  z G’  z R’  z C’  z L’  z G’  z C’  z

Lecture 2 Transmission line equations Represent transmission lines as parallel-wire configuration V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) i (z,t) i (z+  z,t) i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Lecture 2 Transmission line equations V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) -V(z+  z,t) + V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t -  V(z,t)/  z = R’ i (z,t) + L’  i (z,t)/  t, (3) Rewrite V(z,t) and i (z,t) as phasors, for sinusoidal V(z,t) and i (z,t) : V(z,t) = Re( V(z) e jtjt ), i (z,t) = Re( i (z) e jtjt ),

Lecture 2 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) Recall: di(t)/dt = Re(d i e jtjt )/dt ),= Re(i jtjt e jj -  V(z,t)/  z = R’ i (z,t) + L’  i (z,t)/  t, (3) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4)

Lecture 2 Transmission line equations Represent transmission lines as parallel-wire configuration V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) i (z,t) i (z+  z,t) i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Lecture 4 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - i (z+  z,t) + i (z,t) = G’  z V (z +  z,t) + C’  z  V(z +  z,t)/  t -  i(z,t)/  z = G’ V (z,t) + C’  V (z,t)/  t, (5) Rewrite V(z,t) and i (z,t) as phasors, for sinusoidal V(z,t) and i (z,t) : V(z,t) = Re( V(z) e jtjt ), i (z,t) = Re( i (z) e jtjt ), i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Lecture 2 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) Recall: dV(t)/dt = Re(d V e jtjt )/dt ),= Re(V jtjt e jj -  i(z,t)/  z = G’ V (z,t) + C’  V (z,t)/  t, (6) - d i(z)/ dz = G’ V (z) + j  C’ V (z), (7)

Lecture 2 V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain Take d /dz on both sides of eq. (4) - d² V(z)/ dz² = R’ d i (z)/dz + j  L’ d i (z)/dz, (8)

Lecture 2 - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain substitute (7) to (8) d² V(z)/ dz² = ( R’ + j  L’) (G’+ j  C’)V(z), - d² V(z)/ dz² = R’ d i (z)/dz + j  L’ d i (z)/dz, (8) d² V(z)/ dz² - ( R’ + j  L’) (G’+ j  C’)V(z) = 0, (9) or d² V(z)/ dz² -  ² V(z) = 0, (10)  ² = ( R’ + j  L’) (G’+ j  C’), (11)

Lecture 2 V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain Take d /dz on both sides of eq. (7) - d² i(z)/ dz² = G’ d V (z)/dz + j  C’ d V (z)/dz, (12)

Lecture 2 - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain substitute (4) to (12) d² i(z)/ dz² = ( R’ + j  L’) (G’+ j  C’)i(z), d² i(z)/ dz² - ( R’ + j  L’) (G’+ j  C’) i(z) = 0, (9) or d² i(z)/ dz² -  ² i(z) = 0, (13)  ² = ( R’ + j  L’) (G’+ j  C’), (11) - d² i(z)/ dz² = G’ d V (z)/dz + j  C’ d V (z)/dz, (12)

Lecture 2 Wave equations d² i(z)/ dz² -  ² i(z) = 0, (13) d² V(z)/ dz² -  ² V(z) = 0, (10)  =  + j ,  = Re ( R’ + j  L’) (G’+ j  C’),  = Im ( R’ + j  L’) (G’+ j  C’),

Lecture 2 Wave equations d² i(z)/ dz² -  ² i(z) = 0, (13) d² V(z)/ dz² -  ² V(z) = 0, (10)  =  + j ,  = Re ( R’ + j  L’) (G’+ j  C’),  = Im ( R’ + j  L’) (G’+ j  C’), V(z) = V 0 (14) Solving the second order differential equation + e -z-z + - V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz

Lecture 2 Wave equations V(z) = V 0 (14) + e -z-z + - V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz where: + V0V0 - V0V0 andare determined by boundary conditions. + I0I0 - I0I0 andare related to - V0V0 + V0V0 andby characteristic impedance Z 0.

Lecture 2 recall: - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) V(z) = V 0 (14) V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz e -z-z e -z-z V0V0 + e zz V0V0 - - = ( R’ + j  L’) i (z), (16) i (z) = ( R’ + j  L’)  e -z-z (V0(V0 + e zz V0V0 - - ) I0I0 + =  V0V0 + I0I0 - = -- V0V0 - (17) (18) Characteristic impedance Z 0

Lecture 5 Characteristic impedance Z 0 I0I0 + = ( R’ + j  L’)  V0V0 + I0I0 - = -- V0V0 - (17) (18) = ( R’ + j  L’)  + Z 0  Define characteristic impedance Z 0 I0I0 + V0V0 =  = ( R’ + j  L’) (G’+ j  C’) ( R’ + j  L’) (G’+j  C’) recall:

Lecture 5 Summary:  = ( R’ + j  L’) (G’+ j  C’) + Z 0  I0I0 + V0V0 = ( R’ + j  L’) (G’+j  C’) V(z) = V 0 (14) V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz e -z-z (19) (20)

Lecture 5 Example, an air line : solution: R’ = 0 , G’ = 0 / , Z 0 = 50 ,  = 20 rad/m, f = 700 MHz L’ = ? and C’ = ? Z0Z0 = ( R’ + j  L’) (G’+j  C’) = j  L’ j  C’ = 50   = ( R’ + j  L’) (G’+ j  C’) = jj L’C’  =  + j ,  =  L’C’ = 20 rad/m

Lecture 5 lossless transmission line : = ( R’ + j  L’) (G’+ j  C’)  =  + j , If R’<< j  L’ and G’ << j  C’,  = ( R’ + j  L’ ) (G’+ j  C’) = jj L’C’  = 0  =  L’C’ lossless line

Lecture 2 lossless transmission line :  = 0  =  L’C’ lossless line Z0Z0 = ( R’ + j  L’) (G’+j  C’) = j  L’ j  C’ Z0Z0 = L’ C’  = 2  / = 2  /  =  L’C’ 1 Vp =  /  = L’C’ 1

Lecture 2 For TEM transmission line : Vp = L’C’ 1 L’C’ =  =  1  =  L’C’ =   = rrrr c Z0Z0 = L’ C’ summary : V(z) = V V0V0 e jzjz i(z) = I 0 + e -j  z + - I0I0 e jzjz e = rrrr c Vp = L’C’ 1  =  =  

Lecture 5 Voltage reflection coefficient : Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi i(z) = V(z) = V V0V0 e jzjz - e -j  z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 V L = + = - V0V0 + V0V0 V(z) z = V0V0 Z0Z0 - V0V0 Z0Z0 i(z) z = 0 i L = = ZLZL = VLVL iLiL = + - V0V0 + V0V0 - + V0V0 Z0Z0 - V0V0 Z0Z0 + V0V0 - V0V0 = ZLZL Z0Z0 - ZLZL Z0Z0 +

Lecture 5 Voltage reflection coefficient : - V0V0 + V0V0 = ZLZL Z0Z0 - ZLZL Z0Z0 +    Current reflection coefficient : - i0i0 + i0i0 = -  i  - V0V0 + V0V0 = -  Notes : 1.|  |  1, how to prove it? 2.If Z L = Z 0,  = 0. Impedance match, no reflection from the load Z L.

Lecture 2 An example : A’ z = 0 A Z 0 = 100  R L = 50  C L = 10pF f = 100MHz Z L = R L + j/  C L = 50 –j159 = ZLZL Z0Z0 - ZLZL Z0Z0 + 

Lecture 2 Standing wave Input impedance i(z) = V(z) = V V0V0 e jzjz - e -j  z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 - V0V0 + V0V0 with  = i(z) = V(z) = V 0 ( ) + +  e jzjz - e -j  z (e(e + V0V0 Z0Z0 e jzjz  ) |V(z)| = | V 0 | | | + e -j  z |||| e jzjz + e jrjr = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2

Lecture 2 Standing wave i(z) = V(z) = V V0V0 e jzjz - e -j  z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 - V0V0 + V0V0 with  = i(z) = V(z) = V 0 ( ) + +  e jzjz - e -j  z (e(e + V0V0 Z0Z0 e jzjz  ) |V(z)| = | V 0 | | | + e -j  z |||| e jzjz + e jrjr = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2

Lecture 2 Standing wave i(z) = V(z) = V 0 ( )  e jzjz e -j  z (e(e + V0V0 Z0Z0 e jzjz  ) |i(z)| = | V 0 | /|Z0|| | + e -j  z |||| e jzjz - e jrjr = | V 0 |/|Z 0 | [ 1+ |  |² - 2|  |cos(2  z +  r )] + 1/2 = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2 |V(z)|

Lecture 2 Special cases = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2 |V(z)| 1.Z L = Z 0,  = 0 = | V 0 | + |V(z)| 2. Z L = 0, short circuit,  = -1 |V(z)| |V0| /4- /2- /4 = | V 0 | [ 2 + 2cos(2  z +  )] + 1/2 |V(z)| 2|V0| /4- /2- /4

Lecture 2 Special cases = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2 |V(z)| 3. Z L = , open circuit,  = 1 = | V 0 | [ 2 + 2cos(2  z )] + 1/2 |V(z)| 2|V0| /4- /2- /4

Lecture 2 Voltage maximum = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2 |V(z)| | V 0 | [ 1+ |  |], + |V(z)| max = when 2  z +  r = 2n . –z =  r /4  + n /2 n = 1, 2, 3, …, if  r <0 n = 0, 1, 2, 3, …, if  r >= 0

Lecture 2 Voltage minimum = | V 0 | [ 1+ |  |² + 2|  |cos(2  z +  r )] + 1/2 |V(z)| | V 0 | [ 1 - |  |], + |V(z)| min = when 2  z +  r = (2n+1) . –z =  r /4  + n /2 + /4 Note: voltage minimums occur /4 away from voltage maximum, because of the 2  z, the special frequency doubled.

Lecture 2 Voltage standing-wave ratio VSWR or SWR 1 - |  | |V(z)| min S  |V(z)| max = 1 + |  | S = 1, when  = 0, S = , when |  | = 1,

Lecture 2 An example Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi Voltage probe S = 3, Z 0 = 50 ,  l min = 30cm, l min = 12cm, Z L =?  l min = 30cm,  = 0.6m, S = 3,  |  | = 0.5, Solution: -2  l min +  r = - ,   r = -36º,  , and Z L.

Lecture 2 Input impudence Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi Zg IiIi Z in (z) = V(z) I(z) = + +  e jzjz e -j  z V0V0 ( ) + -  e jzjz e V0V0 ( ) Z0Z0 = + (1  e j2  z ) - (1  e j2  z ) Z0Z0 + (1  e -j2  l ) - (1  e -j2  l ) Z0Z0 Z in (-l) =

Lecture 2 An example A 1.05-GHz generator circuit with series impedance Zg = 10-  and voltage source given by Vg(t) = 10 sin(  t +30º) is connected to a load ZL = 100 +j5-  through a 50- , 67-cm long lossless transmission line. The phase velocity is 0.7c. Find V(z,t) and i(z,t) on the line. Solution: Since, Vp = ƒ, = Vp/f = 0.7c/1.05GHz = 0.2m.  = 2  /,  = 10 .  = (Z L -Z 0 )/(Z L +Z 0 ),  = 0.45exp(j26.6º) + (1  e -j2  l ) - (1  e -j2  l ) Z0Z0 Z in (-l) = = j17.4  V 0 [ exp(-j  l)+  exp(j  l) ] + = Z in (-l) + Zg Z in (-l) Vg

Lecture 2 short circuit line Z L = 0,  = -1, S =  Vg(t) VLVL A z = 0 B l Z L = 0 z = - l Z0Z0 Zg IiIi Z in sc i(z) = V(z) = V 0 ) - e jzjz + (e(e -j  z (e(e + V0V0 Z0Z0 e jzjz ) = -2jV 0 sin(  z) + = 2V 0 cos(  z)/Z 0 + Z in = V(-l) i(-l) = jZ 0 tan(  l)

Lecture 2 short circuit line Z in = V(-l) i(-l) = jZ 0 tan(  l) If tan(  l) >= 0, the line appears inductive,j  L eq = jZ 0 tan(  l), If tan(  l) <= 0, the line appears capacitive,1/j  C eq = jZ 0 tan(  l), l = 1/  [  - tan (1/  C eq Z 0 )], The minimum length results in transmission line as a capacitor:

Lecture 2 An example: tan (  l) = - 1/  C eq Z 0 = , Choose the length of a shorted 50-  lossless line such that its input impedance at 2.25 GHz is equivalent to the reactance of a capacitor with capacitance Ceq = 4pF. The wave phase velocity on the line is 0.75c. Solution: Vp = ƒ,   = 2  / = 2  ƒ/Vp = 62.8 (rad/m)  l = tan (-0.354) + n , = n ,

Lecture 2 open circuit line Z L = 0,  = 1, S =  Vg(t) VLVL A z = 0 B l Z L =  z = - l Z0Z0 Zg IiIi Z in oc i(z) = V(z) = V 0 ) + e jzjz - (e(e -j  z (e(e + V0V0 Z0Z0 e jzjz ) = 2V 0 cos(  z) + = 2jV 0 sin(  z)/Z 0 + Z in = V(-l) i(-l) = -jZ 0 cot(  l) oc

Lecture 2 Application for short-circuit and open-circuit Network analyzer Measure Z in oc Z in sc and Calculate Z 0 Measure S paremeters Z in = -jZ 0 cot(  l) oc Z in = jZ 0tan (  l) sc =Z0Z0 Z in sc Z in oc Calculate  l = -jZ0Z0 Z in sc Z in oc

Lecture 2 Line of length l = n /2 = Z L tan(  l) = tan((2  / )(n /2)) = 0, + (1  e -j2  l ) - (1  e -j2  l ) Z0Z0 Z in (-l) = Any multiple of half-wavelength line doesn’t modify the load impedance.

Lecture 2 Quarter-wave transformer l = /4 + n /2 = Z 0 ²/Z L  l = (2  / )( /4 + n /2) =  /2, + (1  e -j2  l ) - (1  e -j2  l ) Z0Z0 Z in (-l) = + (1  e -j  ) - (1  e -j  ) Z0Z0 = (1 +  ) Z0Z0 (1 -  ) =

Lecture 2 An example: A 50-  lossless tarnsmission is to be matched to a resistive load impedance with Z L = 100  via a quarter-wave section, thereby eliminating reflections along the feed line. Find the characteristic impedance of the quarter-wave tarnsformer. Z L = 100  /4 Z 01 = 50  Z in = Z 0 ²/Z L = 50  Z 0 = (Z in Z L ) = (50*100) ½ ½

Lecture 2 Matched transmission line: 1.Z L = Z 0 2.  = 0 3.All incident power is delivered to the load.

Lecture 8 Instantaneous power Time-average power i(z) = V(z) = V 0 ( ) + +  e jzjz - e -j  z (e(e + V0V0 Z0Z0 e jzjz  ) At load z = 0, the incident and reflected voltages and currents: V = V 0 + i = i + V0V0 Z0Z0 i V = V 0 - r i = - V0V0 Z0Z0 r

Lecture 2 Instantaneous power + i P(t) = v(t) i(t) = Re[V exp(j  t)] Re[ i exp(j  t)] i i = Re[|V 0 |exp(j  )exp(j  t)] Re[|V 0 |/Z 0 exp(j  )exp(j  t)] ++ + = (|V 0 |²/Z 0 ) cos²(  t +  ) r P(t) = v(t) i(t) = Re[V exp(j  t)] Re[ i exp(j  t)] r r = Re[|V 0 |exp(j  )exp(j  t)] Re[|V 0 |/Z 0 exp(j  )exp(j  t)] +- + = - |  |²(|V 0 |²/Z 0 ) cos²(  t +  +  r ) + +

Lecture 2 Time-average (|V 0 |²/Z 0 ) cos²(  t +  )dt + + Time-domain approach: P av = i T 1 0 T P (t)dt i = 22  0 T = (|V 0 |²/2Z 0 ) + P av r = -|  |² (|V 0 |²/2Z 0 ) + = P av i P av + P av r = (1-|  |²) (|V 0 |²/2Z 0 ) + Net average power:

Lecture 2 Time-average Phasor-domain approach P av r = -|  |² (|V 0 |²/2Z 0 ) + = (1-|  |²) (|V 0 |²/2Z 0 ) + = (½)Re[V i*] P av P av = (1/2) Re[V 0 V 0 * /Z 0 ] i + + = (|V 0 |²/2Z 0 ) P av