Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.

Slides:



Advertisements
Similar presentations
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Quantum critical states and phase transitions in the presence of non equilibrium noise Emanuele G. Dalla Torre – Weizmann Institute of Science, Israel.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath (Berkeley) Philipp Werner (ETH) Matthias.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
Phase Diagram of One-Dimensional Bosons in Disordered Potential Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Yariv Kafri.
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Strongly interacting cold atoms Subir Sachdev Talks online at
Subir Sachdev (Yale) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition cond-mat/
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov (BU and Harvard) (Harvard) Ehud Altman, (Weizmann and Harvard) Eugene Demler,
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Stringing together the quantum phases of matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev,
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
A. S=1/2 fermions(Si:P, 2DEG) Metal-insulator transition Evolution of magnetism across transition. Phil. Trans. Roy. Soc. A 356, 173 (1998) (cond-mat/ )
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum critical transport and AdS/CFT HARVARD Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller,
Subir Sachdev Superfluids and their vortices Talk online:
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Review on quantum criticality in metals and beyond
Quantum vortices and competing orders
Science 303, 1490 (2004); cond-mat/ cond-mat/
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Superfluid-Insulator Transition of
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Spectroscopy of ultracold bosons by periodic lattice modulations
Deconfined quantum criticality
Presentation transcript:

Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition Talk online at Physical Review Letters 92, (2004)

T Quantum-critical Why study quantum phase transitions ? g gcgc Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. Important property of ground state at g=g c : temporal and spatial scale invariance; characteristic energy scale at other values of g: Critical point is a novel state of matter without quasiparticle excitations Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures.

Outline I.Quantum Ising Chain II.Landau-Ginzburg-Wilson theory Mean field theory and the evolution of the excitation spectrum. III.Superfluid-insulator transition Boson Hubbard model at integer filling. IV.Superconductor-metal transition in nanowires Universal conductance and sensitivity to leads

I. Quantum Ising Chain

2Jg

Full Hamiltonian leads to entangled states at g of order unity

LiHoF 4 Experimental realization

Weakly-coupled qubits Ground state: Lowest excited states: Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p Entire spectrum can be constructed out of multi-quasiparticle states p

Three quasiparticle continuum Quasiparticle pole Structure holds to all orders in 1/g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~3  Weakly-coupled qubits

Ground states: Lowest excited states: domain walls Coupling between qubits creates new “domain- wall” quasiparticle states at momentum p p Strongly-coupled qubits

Two domain-wall continuum Structure holds to all orders in g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~2  Strongly-coupled qubits

Entangled states at g of order unity g gcgc “Flipped-spin” Quasiparticle weight Z A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) g gcgc Ferromagnetic moment N 0 P. Pfeuty Annals of Physics, 57, 79 (1970) g gcgc Excitation energy gap 

Critical coupling No quasiparticles --- dissipative critical continuum

Quasiclassical dynamics P. Pfeuty Annals of Physics, 57, 79 (1970) S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997).

Outline I.Quantum Ising Chain II.Landau-Ginzburg-Wilson theory Mean field theory and the evolution of the excitation spectrum. III.Superfluid-insulator transition Boson Hubbard model at integer filling. IV.Superconductor-metal transition in nanowires Universal conductance and sensitivity to leads

II. Landau-Ginzburg-Wilson theory Mean field theory and the evolution of the excitation spectrum

Outline I.Quantum Ising Chain II.Landau-Ginzburg-Wilson theory Mean field theory and the evolution of the excitation spectrum. III.Superfluid-insulator transition Boson Hubbard model at integer filling. IV.Superconductor-metal transition in nanowires Universal conductance and sensitivity to leads

III. Superfluid-insulator transition Boson Hubbard model at integer filling

Bosons at density f  M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Weak interactions: superfluidity Strong interactions: Mott insulator which preserves all lattice symmetries LGW theory: continuous quantum transitions between these states

I. The Superfluid-Insulator transition Boson Hubbard model For small U/t, ground state is a superfluid BEC with superfluid density density of bosons M.PA. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher Phys. Rev. B 40, 546 (1989).

What is the ground state for large U/t ? Typically, the ground state remains a superfluid, but with superfluid density density of bosons The superfluid density evolves smoothly from large values at small U/t, to small values at large U/t, and there is no quantum phase transition at any intermediate value of U/t. (In systems with Galilean invariance and at zero temperature, superfluid density=density of bosons always, independent of the strength of the interactions)

What is the ground state for large U/t ? Incompressible, insulating ground states, with zero superfluid density, appear at special commensurate densities Ground state has “density wave” order, which spontaneously breaks lattice symmetries

Excitations of the insulator: infinitely long-lived, finite energy quasiparticles and quasiholes

Continuum of two quasiparticles + one quasihole Quasiparticle pole ~3  Insulating ground state Similar result for quasi-hole excitations obtained by removing a boson

Entangled states at of order unity g gcgc Quasiparticle weight Z g gcgc Superfluid density  s gcgc g Excitation energy gap  A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994)

Quasiclassical dynamics S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). K. Damle and S. Sachdev Phys. Rev. B 56, 8714 (1997). Crossovers at nonzero temperature M.P.A. Fisher, G. Girvin, and G. Grinstein, Phys. Rev. Lett. 64, 587 (1990). K. Damle and S. Sachdev Phys. Rev. B 56, 8714 (1997).

Outline I.Quantum Ising Chain II.Landau-Ginzburg-Wilson theory Mean field theory and the evolution of the excitation spectrum. III.Superfluid-insulator transition Boson Hubbard model at integer filling. IV.Superconductor-metal transition in nanowires Universal conductance and sensitivity to leads

IV. Superconductor-metal transition in nanowires

T=0 Superconductor-metal transition Attractive BCS interaction R Repulsive BCS interaction RRcRc Metal Superconductor M.V. Feigel'man and A.I. Larkin, Chem. Phys. 235, 107 (1998) B. Spivak, A. Zyuzin, and M. Hruska, Phys. Rev. B 64, (2001).

T=0 Superconductor-metal transition R ii

Continuum theory for quantum critical point

Consequences of hyperscaling R Superconductor Normal RcRc Sharp transition at T=0 T No transition for T>0 in d=1

Consequences of hyperscaling R Superconductor Normal RcRc Sharp transition at T=0 T Quantum Critical Region No transition for T>0 in d=1

Consequences of hyperscaling Quantum Critical Region

Consequences of hyperscaling Quantum Critical Region

Effect of the leads

Large n computation of conductance

Quantum Monte Carlo and large n computation of d.c. conductance

Conclusions Universal transport in wires near the superconductor-metal transition Theory includes contributions from thermal and quantum phase slips ---- reduces to the classical LAMH theory at high temperatures Sensitivity to leads should be a generic feature of the ``coherent’’ transport regime of quantum critical points. Conclusions Universal transport in wires near the superconductor-metal transition Theory includes contributions from thermal and quantum phase slips ---- reduces to the classical LAMH theory at high temperatures Sensitivity to leads should be a generic feature of the ``coherent’’ transport regime of quantum critical points.