Quarkonia correlators and spectral functions Péter Petreczky Physics Department and RIKEN-BNL SQM 2006, March 26-31, 2006 Meson spectral functions and.

Slides:



Advertisements
Similar presentations
Heavy Quarkonia in a Hot Medium Cheuk-Yin Wong Oak Ridge National Laboratory & University of Tennessee Heavy Quark Workshop, BNL December 12-14, 2005 Introduction.
Advertisements

XQCD 2007T.Umeda (Tsukuba)1 Study of constant mode in charmonium correlators in hot QCD Takashi Umeda This talk is based on the Phys. Rev. D (2007)
Lattice 2007T.Umeda (Tsukuba)1 Study of constant mode in charmonium correlators at finite temperature Takashi Umeda Lattice 2007, Regensburg, Germany,
Ágnes MócsyQWG Meeting BNL June Quarkonia above Deconfinement and Potential Models Quarkonia above Deconfinement and Potential Models Ágnes.
Thermal 2007T.Umeda (Tsukuba)1 Constant mode in charmonium correlation functions Takashi Umeda This is based on the Phys. Rev. D (2007) Thermal.
QCD thermodynamics from lattice simulations an update using finer lattice spacings Péter Petreczky Physics Department and RIKEN-BNL WWND, February 2-7,
Η c and χ c at finite temperature from QCD Sum Rules C. A. Dominguez and Yingwen Zhang University of Cape Town, South Africa M. Loewe Pontificia Universidad.
Ágnes Mócsy SQM. Los Angeles Heavy Quarkonia Above Deconfinement Ágnes Mócsy Strangeness in QM. Los Angeles
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
Ágnes Mócsy, Bad Honnef 08 1 Quarkonia from Lattice and Potential Models Characterization of QGP with Heavy Quarks Bad Honnef Germany, June
The QCD Phase Diagram in Relativistic Heavy Ion Collisions October 24, Inauguration Conference Chiho NONAKA, Nagoya University.
Ágnes MócsyLast Call for LHC CERN Predictions for Quarkonium Properties Above Deconfinement in collaboration with Péter Petreczky.
Stability of Quarkonia in a Hot Medium Cheuk-Yin Wong Oak Ridge National Laboratory & University of Tennessee SQM Workshop, UCLA, March 26-30, 2006 Introduction.
Lecture 7-8: Correlation functions and spectral functions Relation of spectral function and Euclidean correlation functions Maximum Entropy Method Quarkonium.
ATHIC 2010T. Umeda (Hiroshima Univ.)1 Heavy Quarkonium in QGP on the Lattice Takashi Umeda 3rd Asian Triangle Heavy-Ion Conference CCNU, Wuhan, China,
TIFR Mumbai India Feb Ágnes Mócsy at RBRC 1 Quarkonium as Signal of Deconfinement Ágnes Mócsy Thanks to Sourendu, Saumen, Rajeev, Rajiv!
Heavy quarkonia in potential models and lattice QCD Péter Petreczky Heavy quark production in heavy ion collisions Purdue University, January 4-6, 2011.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
5th Heavy Ion CafeT.Umeda (Tsukuba)1 Charmonium dissociation temperatures in lattice QCD Takashi Umeda This talk is based on the Phys. Rev. D
P. Gubler, K. Morita, and M. Oka, Phys. Rev. Lett. 107, (2011) K. Suzuki, P. Gubler, K. Morita, and M. Oka, arxiv: [hep-th]
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Hot quarkonium spectral functions from QCD sum rules and MEM Heavy quarks and quarkonia in thermal ECT*, Villazzano, Italy Philipp Gubler.
Heavy quarks in finite temperature lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Exploring QCD : Deconfinement etc, Newton Institute, Cambridge,
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
Heavy Flavor Productions & Hot/Dense Quark Matter 1 Lattice calculations on Heavy flavor ~ Open and Hidden charm states above Tc ~ Takashi Umeda (BNL)
Heavy quark potential at non-zero temperature and quarkonium spectral function Péter Petreczky 29 th Winter Workshop on Nuclear Dynamics, Squaw Valley,
Heavy quark potential at non-zero temperature Péter Petreczky Hard Probes 2013, Stellenbosch, South Africa, November 4-8, 2013 Motivation : the study and.
RIKEN Lunch Seminar1 Study of Charmonia at finite temperature in quenched lattice QCD Takashi Umeda (BNL) RIKEN Lunch Seminar, Sept. 15th 2005.
Ágnes Mócsy FIAS & ITP, Frankfurt Quarkonia Correlators above Deconfinement * Calculating correlators * Why interested in quarkonia correlators * Charm.
Ágnes Mócsy - RBRC 1 Ágnes Mócsy Quarkonium Correlators and Potential Models DESY, Hamburg, Oct 17-20, 2007.
Theory aspects of quarkonia production in heavy ion collisions Peter Petreczky Current status of the theory:
Quarkonia in Quark-Gluon Plasma Cheuk-Yin Wong Oak Ridge National Laboratory Dubna July 14, 2008 Introduction Static properties of quarkonia in QGP Reactions.
CATHIE-INT 09T.Umeda (Hiroshima Univ.)1 Quarkonium correlators on the lattice T. Umeda (Hiroshima Univ.) H. Ohno, K. Kanaya (Univ. of Tsukuba) for WHOT-QCD.
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Early time dynamics in Heavy Ion Collisions, McGill University, Montréal,
June 13, Hard Probes 2006 Masayuki ASAKAWA Department of Physics, Osaka University Quarkonium States at Finite Temperature An Introduction to Maximum.
Hard Probes Quarkonium states at finite temperature Takashi Umeda (BNL) Hard Probes 2006 June 9-16, 2006, Asilomar Conference Grounds Pacific Grove,
Quarkonia spectral functions at zero and finite temperature Péter Petreczky Nuclear Theory Group and RIKEN-BNL Brookhaven National Laboratory Based on.
Riken Lunch SeminarT.Umeda (BNL)1 A constant contribution in meson correlators at finite temperature Takashi Umeda (BNL) Riken Lunch Seminar, BNL, Jan.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
QCD Thermodynamics on Lattice Peter Petreczky Brookhaven National Laboratory Transition and EOS at T>0 QCD at T>0, mu>0 Deconfinement vs. chiral transition.
Quarkonium spectral functions at T>0 Péter Petreczky Three common myths about quarkonium spectral functions at T>0: 1) Lattice QCD tells that quarkonium.
Summary of lecture II. Summary of lecture III Correlation functions of static quarks at T>0 and color screening pNRQCD at T>0 and potentials Im V(r,T)
Quarkonium at finite Temperature from QCD Sum Rules and the Maximum Entropy Method Seminar at the Komaba Nuclear Theory Tokyo University
Charmonia at finite temperature: an approach based on QCD sum rules and the maximum entropy method “Future Prospects of Hadron Physics at J-PARC and Large.
Ágnes Mócsy - RBRCZimányi 75 Memorial Workshop, Budapest Quarkonium Properties Above Deconfinement Quarkonium Properties Above Deconfinement.
Recent results from QCD sum rule analyses based on the maximum entropy method International Symposium on Chiral Symmetry in Hadrons and
Recent developments in lattice QCD Péter Petreczky
Spatial charmonium correlators and spectral functions
Heavy quark potentials and spectral functions Péter Petreczky
Lattice QCD at finite temperature Péter Petreczky
Thermal modification of bottomonium spectral functions from QCD sum rules with the maximum entropy method Kei Suzuki (Tokyo Institute of Technology)
Theory aspects of quarkonia production in heavy ion collisions
Lattice Calculations of Heavy Quark Potential at non-Zero Temperature
Quarkonia at finite temperature: lattice results Peter Petreczky
Can Quarkonia Survive Deconfinement?
Charmonium production in hot and dense matter Péter Petreczky
Static quarks in finite temperature lattice QCD Péter Petreczky
Quarkonium correlators at finite temperature
A Bayesian Approach to QCD Sum Rules
Overview of Potential models at finite temperature Péter Petreczky
for the WHOT-QCD Collaboration
Lattice QCD study of charmonium dissociation temperatures
Quarkonium states at finite temperature
Hot wave function from lattice QCD
Quarkonium Correlators
Quarkonia at finite T from QCD sum rules and MEM
T. Umeda, H. Ohno (Univ. of Tsukuba) for the WHOT-QCD Collaboration
P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010).
Lattice study of charmonia in Hot QCD
Presentation transcript:

Quarkonia correlators and spectral functions Péter Petreczky Physics Department and RIKEN-BNL SQM 2006, March 26-31, 2006 Meson spectral functions and MEM Lattice calculation of charmonium correlators and spectral functions Lattice calculation of bottomonium correlators and spectral functions Relation of the quarkonium correlators to the heavy quark transport Conclusions and Outlook

Meson correlators and spectral functions Imaginary time Real time Spectral ( dynamic structure ) function Example : virtual photon quenched approximation is used ! What are the excitations (dof) of the system ?

Reconstruction of the spectral functions : MEM data and degrees of freedom to reconstruct Bayesian techniques: find which maximizes data Prior knowledge Maximum Entropy Method (MEM) Asakawa, Hatsuda, Nakahara, PRD 60 (99) , Prog. Part. Nucl. Phys. 46 (01) 459 Likelyhood function Shannon-Janes entropy : - default model - perturbation theory

Heavy quarkonia spectral functions Isotropic Lattice Anisotropic Lattice space time space Datta, Karsch, P.P. Wetzorke Umeda et al, Asakawa, Hatsuda, Jakovác, P.P, Petrov, Velytsky

Charmonia spectral functions at T=0 Jakovác, P.P., Petrov, Velytsky, work in progress For the spectral function is sensitive to lattice cut-off ; In the SC channel even the ground state is poorly resolved ;

Charmonia correlators spectral functions at T>0 1S ( ) exists at 1P ( ) is dissolved at Datta, Karsch, P.P, Wetzorke, PRD 69 (2004) G(T)/G(T=0)=1 Correlators do not agree with potential model with screening ! (see talk by Á. Mócsy )

Charmonia correlators: models vs. lattice Lattice data : Datta, Karsch, P.P, Wetzorke, PRD 69 (2004) Potential model with screening : Á. Mócsy, P.P, hep-ph/ Potential model with screening does not agree with lattice data !

Charmonia spectral functions at T>0 from anisotropic lattice no temperature dependence in the PS spectral functions within errors Jakovác, P.P., Petrov, Velytsky, work in progress 1P state is melted See poster by A. Velytsky at SQM 2006, on Thursday, March 30, 2006

1S states are dissolved only at : 1P states are dissolved at : Bottomonia spectral functions on anisotropic lattices expected survive till Jakovác, P.P., Petrov, Velytsky, hep-lat/

Vector correlator and heavy quark diffusion Effective Langevin theory Free streaming : Collision less Boltzmann equation 1S charmonium states survies Interactions P.P., Petrov, Velytsky, Teaney, hep-lat/

Transport contribution to the Euclidean correlators P.P. and D. Teaney, PRD 73 (06) Lattice data ( Datta et al, ) :

Conclusions 1S charmonia states ( ) survive till unexpectedly high temperatures indications for melting of 1P charmonia states ( ) indications for melting of 1P bottomonia states ( ) Unexpected ! The temperature dependence of the correlators and the spectral functions is inconsistent with screening and potential models ( see talk by Á. Mócsy ) Euclidean correlators calculated on the lattice are sensitive to transport contribution to the spectral functions Better lattice data are required but no indication for DT<1 from the current lattice data

Charmonia spectral functions at T=0 (cont’d) Reconstruction of an input spectral function :Lattice data in PS channel for:

Removing lattice artifacts in the spectral functions Free spectral functions Wilson fermionsHighly improved ( HYP ) fermions