1 Numerical Weather Prediction Parametrization of diabatic processes Convection II The parametrization of convection Peter Bechtold, Christian Jakob, David.

Slides:



Advertisements
Similar presentations
The Analysis of Convective Storms
Advertisements

1 Numerical Weather Prediction Parametrization of diabatic processes Convection II The parametrization of convection Peter Bechtold, Christian Jakob, David.
ECMWF Training Course Peter Bechtold and Christian Jakob
Introduction Irina Surface layer and surface fluxes Anton
1 Numerical Weather Prediction Parameterization of diabatic processes Convection III The ECMWF convection scheme Christian Jakob and Peter Bechtold.
ECMWF Training Course 02 May 2000
What’s quasi-equilibrium all about?
Training course: boundary layer IV Parametrization above the surface layer (layout) Overview of models Slab (integral) models K-closure model K-profile.
Parameterization of convective momentum transport and energy conservation in GCMs N. McFarlane Canadian Centre for Climate Modelling and Analysis (CCCma.
Parameterization in large-scale atmospheric modelling General parameterization problem: Evaluation of terms involving “averaged” quadratic and higher order.
(c) MSc Module MTMW14 : Numerical modelling of atmospheres and oceans Week 3: Modelling the Real World 3.1 Staggered.
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
GFDL Geophysical Fluid Dynamics GFDL Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey AM2 cloud sensitivity to details of convection and cloud.
Tephigrams ENVI1400 : Lecture 8.
Relationships between wind speed, humidity and precipitating shallow cumulus convection Louise Nuijens and Bjorn Stevens* UCLA - Department of Atmospheric.
GFS Deep and Shallow Cumulus Convection Schemes
The scheme: A short intro Some relevant case results Why a negative feedback? EDMF-DualM results for the CFMIP-GCSS intercomparison case: Impacts of a.
Scientific Advisory Committee Meeting, November 25-26, 2002 Large-Eddy Simulation Andreas Chlond Department Climate Processes.
LINDSEY NOLAN WILLIAM COLLINS PETA-APPS TEAM MEETING OCTOBER 1, 2009 Stochastic Physics Update: Simulating the Climate Systems Accounting for Key Uncertainties.
The parameterization of moist convection
Lapse Rates and Stability of the Atmosphere
Convection mini-workshop, Hamburg, July 14, 2004 Parameterization of convection Andreas Chlond Department Climate Processes *Thanks to F. Nober, P. Bechthold,
1 Numerical Weather Prediction Parameterization of diabatic processes Convection III The ECMWF convection scheme Christian Jakob and Peter Bechtold.
ICTP Regional Climate, 2-6 June Sensitivity to convective parameterization in regional climate models Raymond W. Arritt Iowa State University, Ames,
Can we use a statistical cloud scheme coupled to convection and moist turbulence parameterisations to simulate all cloud types? Colin Jones CRCM/UQAM
1 The Thermodynamic Diagram Adapted by K. Droegemeier for METR 1004 from Lectures Developed by Dr. Frank Gallagher III OU School of Meteorology.
A dual mass flux framework for boundary layer convection Explicit representation of cloud base coupling mechanisms Roel Neggers, Martin Köhler, Anton Beljaars.
CONVECTIVE PARAMETERIZATION For the Lesson: Precipitation Processes December 1998.
Cumulus Clouds. What goes on inside a cumulus cloud?
Vertical Structure of the Tropical Troposphere (including the TTL) Ian Folkins Department of Physics and Atmospheric Science Dalhousie University.
Convective Parameterization Options
Horizontal Mixing and Convection. 1st order prognostic PDE Q is the quadratic fluid dynamics term called the “Dynamical Core”. F is the Forcing “Physics”
Modeling the Atmospheric Boundary Layer (2). Review of last lecture Reynolds averaging: Separation of mean and turbulent components u = U + u’, = 0 Intensity.
Aktionsprogramm 2003 Useful Analogies Between the Mass-Flux and the Reynolds-Averaged Second-Moment Modelling Frameworks Dmitrii Mironov German Weather.
Yanjun Jiao and Colin Jones University of Quebec at Montreal September 20, 2006 The Performance of the Canadian Regional Climate Model in the Pacific Ocean.
Some Aspects of Parameterisation in Small Scaled Models Thomas Roschke German Weather Service Department of Aviation Meteorology.
Large Eddy Simulation of PBL turbulence and clouds Chin-Hoh Moeng National Center for Atmospheric Research.
Forecast simulations of Southeast Pacific Stratocumulus with CAM3 and CAM3-UW. Cécile Hannay (1), Jeffrey Kiehl (1), Dave Williamson (1), Jerry Olson (1),
Evaluating forecasts of the evolution of the cloudy boundary layer using radar and lidar observations Andrew Barrett, Robin Hogan and Ewan O’Connor Submitted.
Soundings and Adiabatic Diagrams for Severe Weather Prediction and Analysis.
Parameterization of the effects of Moist Convection in GCMs Mass flux schemes –Basic concepts and quantities –Quasi-steady Entraining/detraining plumes.
New CRM diagnostics dedicated to convective parameterization J-I Yano P. Bechtold, J.-P. Chaboureau, F. Guichard, J.-L. Redelsperger and J.-P. Lafore LMD,
Georg A. Grell (NOAA / ESRL/GSD) and Saulo R. Freitas (INPE/CPTEC) A scale and aerosol aware stochastic convective parameterization for weather and air.
1 Making upgrades to an operational model : An example Jongil Han and Hua-Lu Pan NCEP/EMC GRAPES-WRF Joint Workshop.
The Tropics: Convective Processes
A dual mass flux scheme for shallow cumulus convection Results for GCSS RICO Roel Neggers, Martin Köhler, Anton Beljaars.
Continuous treatment of convection: from dry thermals to deep precipitating convection J.F. Guérémy CNRM/GMGEC.
A Thermal Plume Model for the Boundary Layer Convection: Representation of Cumulus Clouds C. RIO, F. HOURDIN Laboratoire de Météorologie Dynamique, CNRS,
Development and testing of the moist second-order turbulence-convection model including transport equations for the scalar variances Ekaterina Machulskaya.
Stratiform Precipitation Fred Carr COMAP NWP Symposium Monday, 13 December 1999.
Convective Parameterization in NWP Models Jack Kain And Mike Baldwin.
Shallow Moist Convection Basic Moist Thermodynamics Remarkable Features of Moist Convection Shallow Cumulus (Stratocumulus) Courtesy: Dave Stevens.
Cirrus anvil cumulonimbus T (skewed) LCL (Lifting Condensation Level) LFC (Level of Free Convection) EL (Equilibrium level) p overshooting CAPE Sounding.
Cumulus Clouds. Instabilities Resulting in Vertical Overturning 1.Thermal Instability (Assuming uniform vertical pressure gradient) a) Static (Parcel.
Skew T Log P Diagram AOS 330 LAB 10 Outline Static (local) Stability Review Critical Levels on Thermodynamic Diagram Severe Weather and Thermodynamic.
1 Convection parameterization for Weather and Climate models Hua-Lu Pan and Jongil Han NCEP/EMC With help from EMC physics team Myong-In Lee and Sieg Schubert.
Convective Parameterization Jack Kainand Mike Baldwin OAR/NSSL/CIMMS.
Radiative Equilibrium Equilibrium state of atmosphere and surface in the absence of non-radiative enthalpy fluxes Radiative heating drives actual state.
Full calculation of radiative equilibrium. Problems with radiative equilibrium solution Too hot at and near surface Too cold at and near tropopause Lapse.
Radiative-Convective Model. Overview of Model: Convection The convection scheme of Emanuel and Živkovic-Rothman (1999) uses a buoyancy sorting algorithm.
ECMWF Training Course Peter Bechtold
Convective Parameterization
Shifting the diurnal cycle of parameterized deep convection over land
BRETTS-MILLER-JANJIC SCHEME
Theories of Mixing in Cumulus Convection
April 12, 2018 Hing Ong ATM 419/563 Cumulus parameterization: Kain-Fritsch scheme and other mass-flux schemes This lecture is designed for students who.
Han, J. , W. Wang, Y. C. Kwon, S. -Y. Hong, V. Tallapragada, and F
Convection scheme Yanqing Su, Ye Cheng.
Convective Parameterization in NWP Models
transport equations for the scalar variances
Presentation transcript:

1 Numerical Weather Prediction Parametrization of diabatic processes Convection II The parametrization of convection Peter Bechtold, Christian Jakob, David Gregory (with contributions from J. Kain (NOAA/NSLL)

2 Outline Aims of convection parametrization Overview over approaches to convection parametrization The mass-flux approach

3 Caniaux, Redelsperger, Lafore, JAS 1994 Q1c is dominated by condensation term z (km) (K/h) 2 c-e Q1-Qr trans c-e Q z (km) (K/h) trans ab but for Q2 the transport and condensation terms are equally important To calculate the collective effects of an ensemble of convective clouds in a model column as a function of grid-scale variables. Hence parameterization needs to describe Condensation/Evaporation and Transport Task of convection parametrisation total Q1 and Q2

4 Task of convection parametrisation: in practice this means : Determine vertical distribution of heating, moistening and momentum changes Cloud model Determine the overall amount of the energy conversion, convective precipitation=heat release Closure Determine occurrence/localisation of convection Trigger

5 Constraints for convection parametrisation Physical –remove convective instability and produce subgrid-scale convective precipitation (heating/drying) in unsaturated model grids –produce a realistic mean tropical climate –maintain a realistic variability on a wide range of time-scales –produce a realistic response to changes in boundary conditions (e.g., El Nino) –be applicable to a wide range of scales (typical 10 – 200 km) and types of convection (deep tropical, shallow, midlatitude and front/post-frontal convection) Computational –be simple and efficient for different model/forecast configurations (T511, EPS, seasonal prediction)

6 Types of convection schemes Schemes based on moisture budgets –Kuo, 1965, 1974, J. Atmos. Sci. Adjustment schemes –moist convective adjustement, Manabe, 1965, Mon. Wea. Rev. –penetrative adjustment scheme, Betts and Miller, 1986, Quart. J. Roy. Met. Soc., Betts-Miller-Janic Mass-flux schemes (bulk+spectral) –entraining plume - spectral model, Arakawa and Schubert, 1974, Fraedrich (1973,1976), Neggers et al (2002), Cheinet (2004), all J. Atmos. Sci., –Entraining/detraining plume - bulk model, e.g., Bougeault, 1985, Mon. Wea. Rev., Tiedtke, 1989, Mon. Wea. Rev., Gregory and Rowntree, 1990, Mon. Wea. Rev., Kain and Fritsch, 1990, J. Atmos. Sci., Donner, 1993, J. Atmos. Sci., Bechtold et al 2001, Quart. J. Roy. Met. Soc. –episodic mixing, Emanuel, 1991, J. Atmos. Sci.

7 The “Kuo” scheme Closure: Convective activity is linked to large-scale moisture convergence Vertical distribution of heating and moistening: adjust grid-mean to moist adiabat Main problem: here convection is assumed to consume water and not energy -> …. Positive feedback loop of moisture convergence

8 Adjustment schemes e.g. Betts and Miller, 1986, QJRMS: When atmosphere is unstable to parcel lifted from PBL and there is a deep moist layer - adjust state back to reference profile over some time-scale, i.e., T ref is constructed from moist adiabat from cloud base but no universal reference profiles for q exist. However, scheme is robust and produces “smooth” fields.

Procedure followed by BMJ scheme… 1) Find the most unstable air in lowest ~ 200 mb 2) Draw a moist adiabat for this air 3) Compute a first-guess temperature- adjustment profile (T ref ) 4) Compute a first-guess dewpoint- adjustment profile (q ref )

10 Adjustment schemes: The Next Step is an Enthalpy Adjustment First Law of Thermodynamics: With Parameterized Convection, each grid-point column is treated in isolation. Total column latent heating must be directly proportional to total column drying, or dH = 0.

Enthalpy is not conserved for first-guess profiles for this sounding! Must shift T ref and q vref to the left… a b

12 Imposing Enthalpy Adjustment: a Shift profiles to the left in order to conserve enthalpy

13 Adjustment scheme: Adjusted Enthalpy Profiles : b

14 The mass-flux approach Aim: Look for a simple expression of the eddy transport term Condensation termEddy transport term

15 The mass-flux approach Reminder: with Hence == 00 and therefore

16 The mass-flux approach: Cloud – Environment decomposition Total Area: A Cumulus area: a Fractional coverage with cumulus elements: Define area average:

17 The mass-flux approach: Cloud-Environment decomposition With the above: and Average over cumulus elementsAverage over environment Use Reynolds averaging again for cumulus elements and environment separately: and = 0 = 0 Neglect subplume correlations (see also Siebesma and Cuijpers, JAS 1995 for a discussion of the validity of the top-hat assumption)

18 The mass-flux approach Then after some algebra (for your exercise) : Further simplifications : The small area approximation

19 The mass-flux approach Then : Define convective mass-flux: Then

20 The mass-flux approach With the above we can rewrite: To predict the influence of convection on the large-scale with this approach we now need to describe the convective mass-flux, the values of the thermodynamic (and momentum) variables inside the convective elements and the condensation/evaporation term. This requires, as usual, a cloud model and a closure to determine the absolute (scaled) value of the massflux.

21 Mass-flux entraining plume cloud models Cumulus element i Continuity: Heat: Specific humidity: Entraining plume model

22 Mass-flux entraining plume cloud models Simplifying assumptions: 1. Steady state plumes, i.e., Most mass-flux convection parametrizations today still make that assumption, some however are prognostic 2. Bulk mass-flux approach Sum over all cumulus elements, e.g. with e.g., Tiedtke (1989), Gregory and Rowntree (1990), Kain and Fritsch (1990) 3. Spectral method e.g., Arakawa and Schubert (1974) and derivatives Important: No matter which simplification - we always describe a cloud ensemble, not individual clouds (even in bulk models)

23 Large-scale cumulus effects deduced using mass-flux models Assume for simplicity: Bulk model, Combine:

24 Large-scale cumulus effects deduced using mass-flux models Physical interpretation (can be dangerous after a lot of maths): Convection affects the large scales by Heating through compensating subsidence between cumulus elements (term 1) The detrainment of cloud air into the environment (term 2) Evaporation of cloud and precipitation (term 3) Note: The condensation heating does not appear directly in Q 1. It is however a crucial part of the cloud model, where this heat is transformed in kinetic energy of the updrafts. Similar derivations are possible for Q 2.

25 Deducing mass-flux model parameters from observations (2) - use cloud model Yanai and Johnson, 1993

26 Alternatives to the entraining plume model - Episodic mixing Observations show that the entraining plume model might be a poor representation of individual cumulus clouds. Therefore alternative mixing models have been proposed - most prominently the episodic (or stochastic) mixing model (Raymond and Blyth, 1986, JAS; Emanuel, 1991, JAS) Conceptual idea: Mixing is episodic and different parts of an updraught mix differently Basic implementation: assume a stochastic distribution of mixing fractions for part of the updraught air - create N mixtures Version 1: find level of neutral buoyancy of each mixture Version 2: move mixture to next level above or below and mix again - repeat until level of neutral buoyancy is reached Although physically appealing the model is very complex and practically difficult to use

27 Closure in mass-flux parametrizations The cloud model determines the vertical structure of convective heating and moistening (microphysics, variation of mass flux with height, entrainment/detrainment assumptions). The determination of the overall magnitude of the heating (i.e., surface precipitation in deep convection) requires the determination of the mass-flux at cloud base. - Closure problem Types of closures: Deep convection: time scale ~ 1h Equilibrium in CAPE or similar quantity (e.g., cloud work function) Boundary-layer equilibrium Shallow convection: time scale ? ~ 3h idem deep convection, but also turbulent closure (F s =surface heat flux, Z PBL =boundary-layer height) Grant (2001)

28 CAPE closure - the basic idea large-scale processes generate CAPE Convection consumes CAPE

29 CAPE closure - the basic idea Downdraughts Convection consumes CAPE Surface processes also generate CAPE b

30 Boundary Layer Equilibrium closure (1) as used for shallow convection in the IFS 1)Assuming boundary-layer equilibrium of moist static energy h s 2)What goes in goes out Therefore, by integrating from the surface (s) to cloud base (LCL) including all processes that contribute to the moist static energy, one obtains the flux on top of the boundary- layer that is assumed to be the convective flux M c (neglect downdraft contributions) F s is surface moist static energy flux

31 Boundary Layer Equilibrium closure (2) – as suggested for deep convection Postulate: tropical balanced temperature anomalies associated with wave activity are small (<1 K) compared to buoyant ascending parcels ….. gravity wave induced motions are short lived Convection is controlled through boundary layer entropy balance - sub-cloud layer entropy is in quasi-equilibrium – flux out of boundary-layer must equal surface flux ….boundary-layer recovers through surface fluxes from convective drying/cooling Raymond, 1995, JAS; Raymond, 1997, in Smith Textbook F s is surface heat flux

32 Summary (1) Convection parametrisations need to provide a physically realistic forcing/response on the resolved model scales and need to be practical a number of approaches to convection parametrisation exist basic ingredients to present convection parametrisations are a method to trigger convection, a cloud model and a closure assumption the mass-flux approach has been successfully applied to both interpretation of data and convection parametrisation …….

33 Summary (2) The mass-flux approach can also be used for the parametrization of shallow convection. It can also be directly applied to the transport of chemical species The parametrized effects of convection on humidity and clouds strongly depend on the assumptions about microphysics and mixing in the cloud model --> uncertain and active research area …………. Future we already have alternative approaches based on explicit representation (Multi-model approach) or might have approaches based on Wavelets or Neural Networks

34 Trigger Functions CAPE Cloud Depth CIN Moist. Conv. Sub-cloud Mass conv. Cloud-layer Moisture ∂(CAPE)/∂t BMJ (Eta)   Grell (RUC, AVN)   KF (Research)   Bougeault (Meteo FR)   Tiedtke (ECMWF)  Bechtold (Research)   Emanuel (NOGAPS,research)   Gregory/Rown (UKMO) 

35 Closure Assumptions (Intensity) CAPE Cloud-layer moisture Moisture Converg. ∂(CAPE)/∂tSubcloud Quasi-equil. BMJ (Eta)  Grell (RUC, AVN)   KF (Research)  Bougeault (Meteo FR)  Tiedtke (ECMWF)   shallow Bechtold (Research)  Emanuel (Research)  Gregory/Rown (UKMO) 

36 Vertical Distribution of Heat, Moisture Entraining/Detraining Plume Convective Adjustment Buoyancy Sorting Cloud Model BMJ (Eta)  Grell (RUC, AVN)  KF (Research)  Bougeault (Meteo FR)  Tiedtke (ECMWF)  Bechtold (Research)  Emanuel (Research)  Gregory/Rowntree (UKMO) 