Intensity Limits and Beam Performances in the High-Energy Storage Ring

Slides:



Advertisements
Similar presentations
Mitglied der Helmholtz-Gemeinschaft Beam Cooling at HESR in the FAIR Project 12 th September 2011 Dieter Prasuhn.
Advertisements

Application of cooling methods at NICA project G.Trubnikov JINR, Dubna.
Helmholtz International Center for Oliver Boine-Frankenheim GSI mbH and TU Darmstadt/TEMF FAIR accelerator theory (FAIR-AT) division Helmholtz International.
Initial Calculations of Intrabeam Scattering life times in ELIC lattices by Betacool code Chaivat Tengsirivattana CASA, Jefferson Lab University of Virginia.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
ALPHA Storage Ring Indiana University Xiaoying Pang.
High Energy Electron Cooling D. Reistad The Svedberg Laboratory Uppsala University.
Paul Derwent 30 Nov 00 1 The Fermilab Accelerator Complex o Series of presentations  Overview of FNAL Accelerator Complex  Antiprotons: Stochastic Cooling.
Internal target option for RHIC Drell-Yan experiment Wolfram Fischer and Dejan Trbojevic 31 October 2010 Santa Fe Polarized Drell-Yan Physics Workshop.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Issues.
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
1 Development of models of intrabeam scattering for charged beams in storage rings E. Mikhaylova Joint Institute for Nuclear Research Dubna, Russia The.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
1 Machine Advisory Committee Video-Conference JINR, Dubna May 20, 2009 Concept and Status of The NICA Project Nuclotron-based Ion Collider fAcility I.Meshkov.
MEIC Electron Cooler Design Concept. EC potential impact to colliders Reaching a high start luminosity Very short i-bunches achieved by longitudinal cooling.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
1 Muon Acceleration and FFAG II Shinji Machida CCLRC/RAL/ASTeC NuFact06 Summer School August 20-21, 2006.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
MEIC Staged Cooling Scheme and Simulation Studies He Zhang MEIC Collaboration Meeting, 10/06/2015.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Oliver Boine-Frankenheim, High Current Beam Physics Group Simulation of space charge and impedance effects Funded through the EU-design study ‘DIRACsecondary.
Synchronization Andrew Hutton Slava Derbenev Yuhong Zhang.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
1 Studies of electron cooling at DESY K. Balewski, R. Brinkmann, Ya. Derbenev, Yu. Martirosyan, K. Flöttmann, P. Wesolowski DESY M. Gentner, D. Husmann,
Oliver Boine-Frankenheim FAIR accelerator theory group HESR 4: beam dynamics and collective effects Tasks: o Task 1: Detailed beam accumulation studies.
Oliver Boine-Frankenheim, HE-LHC, Oct , 2010, Malta Simulation of IBS (and cooling) Oliver Boine-Frankenheim, GSI, Darmstadt, Germany 1.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
M. Steck, RUPAC 2006, Novosibirsk Cooling of Rare Isotope Beams in the ESR Cooling by: Stochastic cooling (pre-cooling) Electron cooling (final cooling)
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
NICA start-up scenario + questions of instabilities A.Sidorin For NiCA team NICA Machine Advisory Committee at JINR (Dubna) October 19-20, 2015.
Collective effects in EDM storage ring A.Sidorin, Electron cooling group, JINR, Dubna.
1 Electron Cooling of Proton Beam in COSY and S-LSR A.Kobets, Yu.Korotaev, I.Meshkov, A.Sidorin, A.Smirnov JINR, Dubna J. Dietrich, V.Kamerdjiev, R.Maier,
Lab. Director’s Meeting IHEP, Protvino, Russia, January 2008 D. Reistad, The Svedberg Laboratory, Uppsala University.
1 NICA Project Report of The Group I S.L.Bogomolov, A.V.Butenko, A.V.Efremov, E.D.Donets, I.N.Meshkov, V.A.Mikhailov, A.O.Sidorin, A.V.Smirnov, Round Table.
On the feasibility of using an extracted polarized antiproton beam of the HESR with a solid polarized target Presenters: Yu. A. Plis, A.V. Smirnov PSTP.
Numerical Model of an Internal Pellet Target O. Bezshyyko *, K. Bezshyyko *, A. Dolinskii †,I. Kadenko *, R. Yermolenko *, V. Ziemann ¶ * Nuclear Physics.
Synchronization Issues in MEIC Andrew Hutton, Slava Derbenev and Yuhong Zhang MEIC Ion Complex Design Mini-Workshop Jan. 27 & 28, 2011.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Robert R. Wilson Prize Talk John Peoples April APS Meeting: February 14,
INTENSITY LIMITATIONS IN THE LHC INJECTORS Discussion on Landau damping Ibon Santiago González Summer Student Session 2007.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Low Energy Antiproton Facility at CERN Christian Carli on behalf of the AD and ELENA team …. with special thanks to P.Beloshitskii, T.Eriksson and S. Maury.
Mitglied der Helmholtz-Gemeinschaft Stochastic Cooling System for HESR - theoretical and simulation studies - Hans Stockhorst Forschungszentrum Jülich.
Mitglied der Helmholtz-Gemeinschaft Stochastic Cooling System for HESR - theoretical and simulation studies - Hans Stockhorst Forschungszentrum Jülich.
Alexei Fedotov, December 7, Beam parameters and collective effects for pEDM ring (December 7, 2009)
Status of HESR 18th March Gießen Dieter Prasuhn.
Calculation of Beam Equilibrium and Luminosities for
Simulation of Luminosity Variation
A.Smirnov, A.Sidorin, D.Krestnikov
Large Booster and Collider Ring
Acceleration of Polarized Protons and Deuterons at HESR/FAIR
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
ERL accelerator review. Parameters for a Compton source
Effective luminosity simulation for PANDA experiment
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
HESR for SPARC 25th November FAIR MAC Dieter Prasuhn.
He Zhang MEIC R&D Meeting, 07/09/2015
MEIC New Baseline: Part 10
Update on ERL Cooler Design Studies
Status and plans for crab crossing studies at JLEIC
HE-JLEIC: Do We Have a Baseline?
Some Thoughts on the JLEIC Ion Injector
Presentation transcript:

Intensity Limits and Beam Performances in the High-Energy Storage Ring HESR-Consortium: FZJ, GSI, TSL, and Univ. of Bonn and Dortmund HESR Layout Beam Equilibrium Beam Losses and Luminosity Other Intensity Limiting Effects Summary & Outlook 9/15/05 A. Lehrach, HESR, Coulomb ’05

Accumulation and Acceleration of Antiprotons at FAIR Antiproton production Linac: 50 MeV H- SIS18: 5·1012 protons / cycle SIS100: 2-2.5·1013 protons / cycle 26 GeV protons bunch compressed to 50nsec Production target: antiprotons 3% momentum spread CR: bunch rotation and stochastic cooling at 3.8 GeV/c RESR: accumulation at 3.8 GeV/c Production rate 2·107/s (7·1010/h) antiprotons 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 HESR Layout One half of the arc super-period Momentum range 1.5 – 15 GeV/c 6-fold symmetry arcs with a length of 155 m each. Mirror symmetric FODO structure designed as pseudo second order achromat with dispersion suppression. Two straight sections of 132 m length each. Ring circumference 574 m. Qx = 12.16 Qy = 12.18 γtr = 6.5i 9/15/05 A. Lehrach, HESR, Coulomb ’05

Experimental Requirements PANDA (Strong Interaction Studies with Antiprotons): Momentum range: 1.5 to 15 GeV/c “High Resolution Mode” “High Luminosity Mode” Momentum range Up to 9 GeV/c Full momentum range Number of antiprotons 1010 1011 Target thickness 4·1015 cm-2 Peak luminosity 2·1031 cm-2s-1 2·1032 cm-2s-1 Beam emittance 1-2 mm mrad Momentum resolution p/prms = 10-5 p/prms = 10-4 Beam Cooling Electron Cooling Stochastic Cooling 9/15/05 A. Lehrach, HESR, Coulomb ’05

Electron Cooler HV section HESR Electron Cooler Feasibility study of magnetized electron cooling for the HESR 9/2003 (Budker Institute, Novosibirsk, RUS) HV section electrostatic accelerator 0.45 - 8 MV, up to 2 A charged by H- beam Cooling section sc solenoid length 30 m magnetic field 0.2 - 0.5 T straightness 10-5 beam diameter 6 - 10 mm Bending section electrostatic up to 21 KV/cm bending radius 4 m HESR Electron Cooler High voltage (8 MV) tank 12 m Acceleration column Charger: H- Cyclotron HESR beam Cooling section Solenoid 8 m 30 m 9/15/05 A. Lehrach, HESR, Coulomb ’05

Electron Cooling Force Fit to Parkhomchuk formula CELSIUS measurement Dec. 2004 Measurements at CELSIUS seem to predict an accuracy of the longitudinal Parkhomchuk force within a factor of 2 Parkhomchuk model (*particle frame): Effective Coulomb log: Coolig rate: Longitudinal force (momentum spread ): 9/15/05 A. Lehrach, HESR, Coulomb ’05

Pellet target (WASA@CELSIUS) Formation of frozen hydrogen pellets H2 (=0.08 g/cm3) 60000 pellets/s  Beam spot d=30 m <n> = 5x1015 cm-2 1 mm HESR: Target will be switched on after injection and cooling/IBS equilibrium Transverse heating is required to ensure 1 mm spot size on the target 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 Beam Heating Transverse emittance growth in the target: βx,y small, D=D‘=0, θrms: Mean Coulomb scattering angle Longitudinal emittance growth in the target: βs=h|η|/Qs (bunched beams), δrms: Mean relative momentum deviation Multiple IBS: (Soerensen or ‘plasma’ model) Diffusion constant: 9/15/05 A. Lehrach, HESR, Coulomb ’05

Equilibrium for Core Particles (rms analytic model) Results compare very well with BetaCool simulations With equilibrium emittance With fixed emittance 1011 particles 1011 particles 1010 particles 1010 particles Electron Cooler: L = 30 m Ie = 0.2 A veff = 2·104 m/s c = 100 m Target: Pellet Stream dt = 4·1015 cm-2 t = 1 m O. Boine-Frankenheim et al. 9/15/05 A. Lehrach, HESR, Coulomb ’05

INTAS Project “Advanced Beam Dynamics for Storage Rings” FZ Jülich, GSI Darmstadt, JINR Dubna, Univ. Kiev, ITEP Moscow, TSL Uppsala Kinetic simulation of cooling dynamics Benchmarking of different models for IBS, cooling forces and beam-target interaction Analytical and numerical studies of instability thresholds in the presence of cooling and space charge Impedance library Kinetic simulation studies of accumulation schemes 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 Beam Loss Mechanisms Hadronic Interaction Single Target Scattering out of the acceptance Energy straggling out of the acceptance Single IBS Scattering (Touschek loss rate) 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 Hadronic Interaction Loss rate: PDG nt = 4·1015 cm-2 frev = 443, 519, 521 kHz σppbar = 100, 57, 51 mbarn 1.5 GeV/c 9 GeV/c 15 GeV/c Relative loss rate / s-1 1.7·10-4 1.2·10-4 1.1·10-4 1/e lifetime 1.6 h 2.3 h 2.5 h 9/15/05 A. Lehrach, HESR, Coulomb ’05

Single Coulomb Scattering Loss rate: εt = 1 mm mrad nt = 4·1015 cm-2, Hydrogen frev = 443, 519, 521 kHz Rutherford Cross Section 1.5 GeV/c 9 GeV/c 15 GeV/c Relative Beam Loss Rate / s-1 1.8·10-4 7.3·10-6 2.1·10-6 1/e lifetime / h 1.5 h 38.1 h 132.3 h 9/15/05 A. Lehrach, HESR, Coulomb ’05

Energy Loss Straggling Single collision energy loss probability ( energy loss): Maximum energy transfer: Scaling quantity (~ mean energy loss): 9/15/05 A. Lehrach, HESR, Coulomb ’05

Energy Loss Straggling Loss probability per turn Loss rate: δeff= -εeff/(β20E0)=10-3 frev = 443, 519, 521 kHz 1.5 GeV/c 9 GeV/c 15 GeV/c Relative Beam Loss Rate / s-1 3.5·10-4 4.1·10-5 2.8·10-5 1/e Beam life time / h 0.79 6.8 9.9 9/15/05 A. Lehrach, HESR, Coulomb ’05

Single IBS: Touschek Loss Rate Single IBS changes the scattered particle momentum sufficiently that it excides the momentum acceptance of the accelerator Loss rate: δeff=10-3 1/T0 = frev = 443, 519, 521 kHz Touschek (IBS) lifetime increases with larger emittance Relative Beam Loss Rate / s-1 1.5 GeV/c 9 GeV/c 15 GeV/c 0.01mm mrad 4·10-2 2·10-4 4·10-5 1mm mrad 2·10-7 4·10-8 1/e Beam life time / h 6.9 1390 7000 9/15/05 A. Lehrach, HESR, Coulomb ’05

Relative Beam Loss Rate / s-1 A. Lehrach, HESR, Coulomb ’05 Beam Life Time 1.5GeV/c 9 GeV/c 15 GeV/c Relative Beam Loss Rate / s-1 7.4·10-4 1.7·10-4 1.4·10-4 1/e Beam life time / s ~ 1400 ~ 6000 ~ 7200 L0: initial luminosity τ: beam lifetime texp: experimental time tprep: beam preparation time np: number of particle nt: target desnity frev revolution frequency 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 HESR Nominal Cycle 9/15/05 A. Lehrach, HESR, Coulomb ’05

Average Luminosity for HL for different pbar production rates! 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 Effects on the Beam Injection: Losses due to injection oscillation and RF capture Pre-Cooling: Cooled and hot beams merge Ramp: Snapback Non-linear part of the ramp Tune and Chromaticity control Beam preparation: Squeeze Orbit Control for beam-target overlap Physics: Beam-Target Interaction, IBS, beam losses 9/15/05 A. Lehrach, HESR, Coulomb ’05

Effect of Electron Beam Tune shift: at lowest momentum ξ: neutralization factor Electron heating . Coherent Dipole Instabilities: In the presence of the electron beam in the cooling section, both longitudinal and transverse instability could take place for the circulating beam due to ion clouds Theoretical “forecast”: N.S.Dikansky, V.V.Parkhomchuk, D.V.Pestrikov, Instability of Bunched Proton Beam interacting with ion “footprint”, Rus. Journ. Of Tech. Physics, v.46 (1976) 2551. P. Zenkevich, A. Dolinskii and I. Hofmann, Dipole instability of a circulating beam due to the ion cloud in an electron cooling system, NIM A 532 (October 2004). 9/15/05 A. Lehrach, HESR, Coulomb ’05

A. Lehrach, HESR, Coulomb ’05 Summary & Outlook Beam equilibrium is dominated by IBS  heat the beam transversely Major beam losses are induces by beam-target interaction  sufficient pbar production rate needed at low momenta Beam effects and losses during cycle Effect of the electron beam on the circulating beam 9/15/05 A. Lehrach, HESR, Coulomb ’05