Medical Biochemistry, Lecture 24

Slides:



Advertisements
Similar presentations
Enzyme Kinetics C483 Spring 2013.
Advertisements

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Kinetics.
Kinetics: Reaction Order Reaction Order: the number of reactant molecules that need to come together to generate a product. A unimolecular S  P reaction.
ENZYMES: KINETICS, INHIBITION, REGULATION
Enzyme Kinetics, Inhibition, and Control
Enzyme Kinetic Zhi Hui.
Chapter 7 Chem 341 Suroviec Fall I. Introduction The structure and mechanism can reveal quite a bit about an enzyme’s function.
Biochemistry Lecture 8.
Enzyme Kinetics. Rate constant (k) measures how rapidly a rxn occurs AB + C k1k1 k -1 Rate (v, velocity) = (rate constant) (concentration of reactants)
Enzymes. What is an enzyme? globular protein which functions as a biological catalyst, speeding up reaction rate by lowering activation energy without.
Chapter 8: Enzymes: Basic Concepts and Kinetics Copyright © 2007 by W. H. Freeman and Company Berg Tymoczko Stryer Biochemistry Sixth Edition.
General Features of Enzymes Most biological reactions are catalyzed by enzymes Most enzymes are proteins Highly specific (in reaction & reactants) Involvement.
Enzyme Kinetics Chapter 8. Kinetics Study of rxn rates, changes with changes in experimental conditions Simplest rxn: S P –Rate meas’d by V = velocity.
The effect of inhibitor (Inorganic phosphate & Sodium fluoride) on the rate of an enzyme catalyzed reaction.
Enzyme Kinetics and Catalysis II 3/24/2003. Kinetics of Enzymes Enzymes follow zero order kinetics when substrate concentrations are high. Zero order.
Enzyme Kinetics: Study the rate of enzyme catalyzed reactions. - Models for enzyme kinetics - Michaelis-Menten kinetics - Inhibition kinetics - Effect.
Chapter 12 Enzyme Kinetics, Inhibition, and Control Chapter 12 Enzyme Kinetics, Inhibition, and Control Revised 4/08/2014 Biochemistry I Dr. Loren Williams.
Chapter 13 Enzyme Kinetics
Inhibited Enzyme Kinetics Inhibitors may bind to enzyme and reduce their activity. Enzyme inhibition may be reversible or irreversible. For reversible.
Enzyme activity is measured by the amount of product produced or the amount of substrate consumed. The rate of the enzymatic reaction is measured by the.
ENZYME KINETIC M. Saifur R, PhD. Course content  Enzymatic reaction  Rate of Enzyme-Catalyzed Reactions  Quatification of Substrate Concentration and.
Molecule, Gene, and disease Sun. 2 – 3 – 2014 Session 3 Enzymes and enzyme regulation Dr. Muna A. R.
Review session for exam-III Lectures The concept of “induced fit” refers to the fact that: A. Enzyme specificity is induced by enzyme-substrate.
CH13. Enzymes cXXkcZ2jWM&feature=related.
Chapter 6.3: Enzyme Kinetics CHEM 7784 Biochemistry Professor Bensley.
Properties of Enzymes Catalyst - speeds up attainment of reaction equilibrium Enzymatic reactions to faster than the corresponding uncatalyzed.
23.6 Enzymes Three principal features of enzyme-catalyzed reactions: 1. For a given initial concentration of substrate, [S] 0, the initial rate of product.
ENZYMES. are biological catalyst are mostly proteinaceous in nature, but RNA was an early biocatalyst are powerful and highly specific catalysts.
Enzyme Kinetics and Inhibition
Enzymes II: Enzyme Kinetics
Quiz #3 Define Enzyme Classes Systematic naming –Given a reaction (including names) –Use subclass designation if appropriate Catalytic mechanisms –Define.
Why study enzyme kinetics?  To quantitate enzyme characteristics  define substrate and inhibitor affinities  define maximum catalytic rates  Describe.
Rules for deriving rate laws for simple systems 1.Write reactions involved in forming P from S 2. Write the conservation equation expressing the distribution.
Biochemistry Lecture 8. Why Enzymes? Higher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation Metabolites.
Picture of an enzymatic reaction. Velocity =  P/  t or -  S/  t Product Time.
Lecture – 5 The Kinetics of Enzyme-Catalyzed Reactions Dr. AKM Shafiqul Islam School of Bioprocess Engineering University Malaysia Perlis
Paul D. Adams University of Arkansas Mary K. Campbell Shawn O. Farrell Chapter Six The Behavior of Proteins:
2 Enzymes The Hill equation describes the behavior of enzymes that exhibit cooperative binding of substrate 1. some enzymes bind their substrates.
Prof. R. Shanthini 23 Sept 2011 Enzyme kinetics and associated reactor design: Determination of the kinetic parameters of enzyme-induced reactions CP504.
Lecture – 4 The Kinetics of Enzyme-Catalyzed Reactions Dr. AKM Shafiqul Islam School of Bioprocess Engineering University Malaysia Perlis
The Michaelis-Menton Model For non-allosteric enzymes, the most widely used kinetic model is based upon work done by Leonor Michaelis and Maud Menton For.
Enzyme Kinetics Chapter 6. Kinetics Study of rxn rates, changes with changes in experimental conditions Simplest rxn: S  P –Rate meas’d by V = velocity.
LECTURE 4: Reaction Mechanisms and Inhibitors Reaction Mechanisms A: Sequential Reactions All substrates must combine with enzyme before reaction can.
Lab: principles of protein purification
Enzyme Kinetics.
Michaelis-Menten kinetics
Fundamentals of Biochemistry
Enzyme Kinetics Velocity (V) = k [S]
Process Kinetics Lecture 1 Mahesh Bule 4/27/2017
Enzyme Kinetics I 10/15/2009. Enzyme Kinetics Rates of Enzyme Reactions Thermodynamics says I know the difference between state 1 and state 2 and  G.
Rmax and Km (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Indicate if enzyme.
R max and K m (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Constants – Indicate.
Enzyme Inhibition (26.4) Inhibition is a term used to describe the inability of a product being formed due to the presence of another substance (the inhibitor)
Biochemical Reaction Rate: Enzyme Kinetics What affect do enzymes and enzyme inhibitors have on enzyme catalysis on a quantitative level? Lipitor inhibits.
KAPITOLA 3 Enzymová katalýza I katylytická aktivita enzymů katylytická aktivita enzymů interakce enzym - substrát interakce enzym - substrát koenzymy koenzymy.
6.1 A Brief Look at Enzyme Energetics and Enzyme Chemistry Converting substrates to product requires intermediate states – Intermediates are less stable.
Biochemistry: A Short Course Third Edition CHAPTER 7 Kinetics and Regulation © 2015 W. H. Freeman and Company Tymoczko Berg Stryer.
Title: Lesson 4 B.2 Enzymes Learning Objectives: – Describe the structure and the function of an enzyme – Identify and explain the factors that affect.
Enzyme Kinetics and Inhibition Stryer Short Course Chapter 7.
Enzyme Kinetics Sadia Sayed. What is Enzyme Kinetics?  Kinetics is the study of the rates at which chemical reactions occur  Then what is Enzyme Kinetics?
Lecture 5:Enzymes Ahmad Razali Ishak
Key topics about enzyme function:
Enzyme kinetics & Michaelis-Menten Equation Abdul Rehman Abbasi MSc Chemistry Semester – I Preston University Isb.
ENZYMES: KINETICS, INHIBITION, REGULATION
Enzymes.
Determination of the Kinetic activity of beta-fructofuranosidase and the Mechanism of Inhibition by Copper (II) Sulfate.
Enzyme Kinetics provides Insight into
Lecture 8 Enzyme Kinetics
Enzyme Kinetics Velocity (V) = k [S]
Presentation transcript:

Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24

Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis-Menten equation Enzyme inhibitors: types and kinetics

Enzyme Kinetics Equation

Michaelis-Menten Equation

Initial Velocity (vo) and [S] The concentration of substrate [S] present will greatly influence the rate of product formation, termed the velocity (v) of a reaction. Studying the effects of [S] on the velocity of a reaction is complicated by the reversibility of enzyme reactions, e.g. conversion of product back to substrate. To overcome this problem, the use of initial velocity (vo) measurements are used. At the start of a reaction, [S] is in large excess of [P], thus the initial velocity of the reaction will be dependent on substrate concentration

Michaelis-Menten Curve

Initial Velocity (vo) and [S] (cont) When initial velocity is plotted against [S], a hyperbolic curve results, where Vmax represents the maximum reaction velocity. At this point in the reaction, if [S] >> E, all available enzyme is "saturated" with bound substrate, meaning only the ES complex is present.

Michaelis-Menten Curve

Substrate Saturation of an Enzyme A. Low [S] B. 50% [S] or Km C. High, saturating [S]

Steady State Assumption The M-M equation was derived in part by making several assumptions. An important one was: the concentration of substrate must be much greater than the enzyme concentration. In the situation where [S] >> [E] and at initial velocity rates, it is assumed that the changes in the concentration of the intermediate ES complex are very small over time (vo). This condition is termed a steady-state rate, and is referred to as steady-state kinetics. Therefore, it follows that the rate of ES formation will be equal to the rate ES breakdown.

Michaelis-Menten Equation Derivation Rate of ES formation = k1([ET] - [ES])[S] (where [ET] is total concentration of enzyme E and k-2 is considered neglible) Rate of ES breakdown to product = k-1[ES] + k2[ES]

Michaelis-Menten Equation Derivation (cont) Thus for the steady state assumption: k1([ET] - [ES])[S] = k-1[ES] + k2[ES] This equation is the basis for the final Michaelis-Menten following algebraic rearrangement and substitution of Km and Vmax terms.

Meaning of Km An important relationship that can be derived from the Michaelis-Menten equation is the following: If vo is set equal to 1/2 Vmax, then the relation Vmax /2 = Vmax[S]/Km + [S] can be simplied to Km + [S] = 2[S], or Km = [S]. This means that at one half of the maximal velocity, the substrate concentration at this velocity will be equal to the Km. This relationship has been shown experimentally to be valid for many enzymes much more complex in regards to the number of substrates and catalytic steps than the simple single substrate model used to derive it.

Meaning of Km (cont) The significance of Km will change based on the different rate constants and which step is the slowest (also called the rate-limiting step). In the simplest assumption, the rate of ES breakdown to product (k2) is the rate-determining step of the reaction, so k-1 >> k2 and Km = k-1/k1. This relation is also called a dissociation constant for the ES complex and can be used as a relative measure of the affinity of a substrate for an enzyme (identical to Kd). However if k2 >> k-1 or k2 and k-1 are similar, then Km remains more complex and cannot be used as a measure of substrate affinity.

Uses of Km Experimentally, Km is a useful parameter for characterizing the number and/or types of substrates that a particular enzyme will utilize (an example will be discussed). It is also useful for comparing similar enzymes from different tissues or different organisms. Also, it is the Km of the rate-limiting enzyme in many of the biochemical metabolic pathways that determines the amount of product and overall regulation of a given pathway. Clinically, Km comparisons are useful for evaluating the effects mutations have on protein function for some inherited genetic diseases.

Meaning of Vmax The values of Vmax will vary widely for different enzymes and can be used as an indicator of an enzymes catalytic efficiency. It does not find much clinical use. There are some enzymes that have been shown to have the following reaction sequence: In this situation, the formation of product is dependent on the breakdown of an enzyme-product complex, and is thus the rate-limiting step defined by k3.

Derivation of kcat A more general term has been defined, termed kcat, to describe enzymes in which there are multiple catalytic steps and possible multiple rate-limiting steps. The Michaelis-Menten equation can be substituted with kcat

Definition and Use of kcat The constant, kcat (units of sec-1), is also called the turnover number because under saturating substrate conditions, it represents the number of substrate molecules converted to product in a given unit of time on a single enzyme molecule. In practice, kcat values (not Vmax) are most often used for comparing the catalytic efficiencies of related enzyme classes or among different mutant forms of an enzyme.

Two Substrate Reactions Many enzyme reactions involve two or more substrates. Though the Michaelis-Menten equation was derived from a single substrate to product reaction, it still can be used successfully for more complex reactions (by using kcat). Random Ordered Ping-pong

Two Substrate Reactions (cont) In random order reactions, the two substrates do not bind to the enzyme in any given order; it does not matter which binds first or second. In ordered reactions, the substrates bind in a defined sequence, S1 first and S2 second. These two reactions share a common feature termed a ternary complex, formed between E, ES1, ES2 and ES1S2. In this situation, no product is formed before both substrates bind to form ES1S2.

Two Substrate Reactions (cont) Another possibility is that no ternary complex is formed and the first substrate S1 is converted to product P1 before S2 binds. These types of reactions are termed ping-pong or double displacement reactions.

Km and kcat Example: HSV-1 Thymidine Kinase A phosphorylation kinase reaction: T (thymidine) + ATP is converted to TMP (thymidine monophosphate) + ADP In herpesvirus infected cells, this viral encoded TK phosphorylates the antiviral drug acyclovir; this is the pharmacological basis of most herpesvirus treatments In the last 10 years, this approach has been applied to cancer gene therapies with HSV-TK and ganciclovir

Thymidine Kinetic Constants for HSV-1 Thymidine Kinase (ONLY AN EXAMPLE!!)

Ganciclovir Kinetic Constants for HSV-1 Thymidine Kinase (ONLY AN EXAMPLE!)

Lineweaver-Burk (double reciprocal plot) If the reciprocal (1/X) of the Michaelis-Menten equation is done, after algebraic simplification the following equation results: This relation is written in the format of the equation for a straight line, y = mx + b, where y = 1/vo, m (slope) = Km/Vmax, x = 1/[S] and the y-intercept, b = 1/Vmax. When this relation is plotted,the result is a straight line graph

Lineweaver-Burk (double reciprocal plot) (cont)

Uses of double reciprocal plot The x intercept value is equal to -1/Km. The biggest advantage to using the double reciprocal plot is a more accurate determination of Vmax, and hence Km. It is also useful in characterizing the effects of enzyme inhibitors and distinguishing between different enzyme mechanisms.

Enzyme Inhibitor Types Inhibitors of enzymes are generally molecules which resemble or mimic a particular enzymes substrate(s). Therefore, it is not surprising that many therapeutic drugs are some type of enzyme inhibitor. The modes and types of inhibitors have been classified by their kinetic activities and sites of actions. These include Reversible Competitive Inhibitors, Reversible Non-Competitive Inhibitors, and Irreversible Inhibitors

Definition of Ki For reversible inhibitors, a term Ki can be determined. For competitive inhibitors, the following relation can be used: Km + I = Km (1 + [I] / Ki ) ; (where Km + I is the determined Km in the presence of [I]). Determining the Ki for other inhibitor types is related but much more complex and not within the scope of this lecture or course

Uses of Ki Ki values are used to characterize and compare the effectiveness of inhibitors relative to Km. This parameter is especially useful and important in evaluating the potential therapeutic value of inhibitors (drugs) of a given enzyme reaction. For example, Ki values are used for comparison of the different types of HIV protease inhibitors. In general, the lower the Ki value, the tighter the binding, and hence the more effective an inhibitor is.

Competitive Inhibition Vmax - No change Km INCREASES - indicates a direct interaction of the inhibitor in the active site

Reversible Competitive Inhibition Competitive inhibitors compete with the substrate for binding at the active site (as E + I). In the double reciprocal plot for a competitive inhibitor acting at the substrate site for the following reasons, notice with increasing concentration of inhibitor, the Vmax does not change; however, the Km of the substrate is increased. This also reflects the reversible nature of the inhibitor; there is always some concentration of substrate which can displace the inhibitor.

Non-Competitive Inhibition Vmax DECREASES - inhibitor affects rate of reaction by binding to site other than substrate active-site Km - No change

Reversible Non-Competitive Inhibition Non-competitive inhibitors combine with both the enzyme (E + I) and the enzyme-substrate (EI + S) complex. The inhibitor binds to a site other that the substrate site, and is thus independent of the presence or absence of substrate. This action results in a conformational change in the protein that affects a catalytic step and hence decreases or eliminates enzyme activity (formation of P). Notice in the reciprocal plot, a non-competitive inhibitor does not affect the binding of the substrate (Km), but it does result in a decrease in Vmax. This can be explained by the fact that since inhibitor bound to an enzyme inactivates it, the more EI formed will lower [ES] and thus lower the overall rate of the reaction Vmax.

Irreversible Inhibitors Irreversible inhibitors generally result in the destruction or modification of an essential amino acid required for enzyme activity. Frequently, this is due to some type of covalent link between enzyme and inhibitor. These types of inhibitors range from fairly simple, broadly reacting chemical modifying reagents (like iodoacetamide that reacts with cysteines) to complex inhibitors that interact specifically and irreversibly with active site amino acids. (termed suicide inhibitors). These inhibitors are designed to mimic the natural substrate in recognition and binding to an enzyme active site. Upon binding and some catalytic modification, a highly reactive inhibitor product is formed that binds irreversibly and inactivates the enzyme. Use of suicide inhibitors have proven to be very clinically effective

Irreversible Inhibitor: Allopurinol

Irreversible Inhibitor: Penicillin (Ex)

Diisopropyl Phosphofluoridate: Irreversible Acetylcholinesterase Inhibitor (Example)

Inhibitor Summary REMEMBER - The types of enzyme inhibitors described have been for relatively simple, single substrate-product reactions that obey Michaelis-Menten kinetics. However, not all enzyme inhibitors will necessarily be one type of inhibitor. Especially for some multi-substrate reactions, a particular inhibitor can be competitive for one substrate and non-competitive with a second or third substrate. Also, suicide inhibitors by design are generally competitive inhibitors of a substrate, and therefore must first bind in the active site.