March 25, 2004Columbia University1 Machine Learning with Weka Lokesh S. Shrestha.

Slides:



Advertisements
Similar presentations
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Advertisements

Florida International University COP 4770 Introduction of Weka.
Weka & Rapid Miner Tutorial By Chibuike Muoh. WEKA:: Introduction A collection of open source ML algorithms – pre-processing – classifiers – clustering.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
UNIVERSITY OF JYVÄSKYLÄ DEPARTMENT OF MATHEMATICAL INFORMATION TECHNOLOGY Tutorial 1: Introduction to WEKA and YALETIES443: Introduction to DM 1 Tutorial.
WEKA Evaluation of WEKA Waikato Environment for Knowledge Analysis Presented By: Manoj Wartikar & Sameer Sagade.
1 SIMS 290-2: Applied Natural Language Processing Preslav Nakov October 6, 2004.
Introduction to Weka and NetDraw
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
An Extended Introduction to WEKA. Data Mining Process.
1 Statistical Learning Introduction to Weka Michel Galley Artificial Intelligence class November 2, 2006.
Machine Learning with WEKA. WEKA: the bird Copyright: Martin Kramer
1 SIMS 290-2: Applied Natural Language Processing Marti Hearst October 30, 2006 Some slides by Preslav Nakov and Eibe Frank.
1 How to use Weka How to use Weka. 2 WEKA: the software Waikato Environment for Knowledge Analysis Collection of state-of-the-art machine learning algorithms.
CSCI 347 / CS 4206: Data Mining Module 05: WEKA Topic 04: Data Preparation Tools.
An Exercise in Machine Learning
CSCI 347 / CS 4206: Data Mining Module 05: WEKA Topic 01: WEKA Navigation.
 The Weka The Weka is an well known bird of New Zealand..  W(aikato) E(nvironment) for K(nowlegde) A(nalysis)  Developed by the University of Waikato.
Contributed by Yizhou Sun 2008 An Introduction to WEKA.
Department of Computer Science, University of Waikato, New Zealand Geoff Holmes WEKA project and team Data Mining process Data format Preprocessing Classification.
WEKA and Machine Learning Algorithms. Algorithm Types Classification (supervised) Given -> A set of classified examples “instances” Produce -> A way of.
Appendix: The WEKA Data Mining Software
In part from: Yizhou Sun 2008 An Introduction to WEKA Explorer.
Department of Computer Science, University of Waikato, New Zealand Bernhard Pfahringer (based on material by Eibe Frank, Mark Hall, and Peter Reutemann)
1 Data preparation: Selection, Preprocessing, and Transformation Literature: Literature: I.H. Witten and E. Frank, Data Mining, chapter 2 and chapter 7.
Weka: a useful tool in data mining and machine learning Team 5 Noha Elsherbiny, Huijun Xiong, and Bhanu Peddi.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Machine Learning with Weka Cornelia Caragea Thanks to Eibe Frank for some of the slides.
Weka: Experimenter and Knowledge Flow interfaces Neil Mac Parthaláin
For ITCS 6265/8265 Fall 2009 TA: Fei Xu UNC Charlotte.
W E K A Waikato Environment for Knowledge Analysis Branko Kavšek MPŠ Jožef StefanNovember 2005.
Artificial Neural Network Building Using WEKA Software
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Weka – A Machine Learning Toolkit October 2, 2008 Keum-Sung Hwang.
Introduction to Weka Xingquan (Hill) Zhu Slides copied from Jeffrey Junfeng Pan (UST)
 A collection of open source ML algorithms ◦ pre-processing ◦ classifiers ◦ clustering ◦ association rule  Created by researchers at the University.
W E K A Waikato Environment for Knowledge Aquisition.
An Exercise in Machine Learning
***Classification Model*** Hosam Al-Samarraie, PhD. CITM-USM.
Weka Tutorial. WEKA:: Introduction A collection of open source ML algorithms – pre-processing – classifiers – clustering – association rule Created by.
Weka. Weka A Java-based machine vlearning tool Implements numerous classifiers and other ML algorithms Uses a common.
Machine Learning with WEKA - Yohan Chin. WEKA ? Waikato Environment for Knowledge Analysis A Collection of Machine Learning algorithms for data tasks.
In part from: Yizhou Sun 2008 An Introduction to WEKA Explorer.
@relation age sex { female, chest_pain_type { typ_angina, asympt, non_anginal,
WEKA: A Practical Machine Learning Tool WEKA : A Practical Machine Learning Tool.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Department of Computer Science, University of Waikato, New Zealand Geoff Holmes WEKA project and team Data Mining process Data format Preprocessing Classification.
An Introduction to WEKA
Machine Learning: Decision Trees in AIMA and WEKA
An Introduction to WEKA
Machine Learning: Decision Trees in AIMA and WEKA
Machine Learning with WEKA
Waikato Environment for Knowledge Analysis
WEKA.
Sampath Jayarathna Cal Poly Pomona
An Introduction to WEKA
Machine Learning with WEKA
Machine Learning with WEKA
Weka Package Weka package is open source data mining software written in Java. Weka can be applied to your dataset from the GUI, the command line or called.
Machine Learning with Weka
An Introduction to WEKA
Tutorial for WEKA Heejun Kim June 19, 2018.
Machine Learning with Weka
Machine Learning with WEKA
Lecture 10 – Introduction to Weka
Statistical Learning Introduction to Weka
Copyright: Martin Kramer
Machine Learning: Decision Trees in AIMA and WEKA
Data Mining CSCI 307, Spring 2019 Lecture 7
Presentation transcript:

March 25, 2004Columbia University1 Machine Learning with Weka Lokesh S. Shrestha

March 25,2004 Columbia University 2 WEKA: the software Machine learning/data mining software written in Java (distributed under the GNU Public License) Used for research, education, and applications Complements “Data Mining” by Witten & Frank Main features:  Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods  Graphical user interfaces (incl. data visualization)  Environment for comparing learning algorithms

March 25,2004 Columbia University age sex { female, chest_pain_type { typ_angina, asympt, non_anginal, cholesterol exercise_induced_angina { no, class { present, 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files

March 25,2004 Columbia University age sex { female, chest_pain_type { typ_angina, asympt, non_anginal, cholesterol exercise_induced_angina { no, class { present, 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files

March 25,2004 Columbia University 5

March 25,2004 Columbia University 6 Explorer: pre-processing the data Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary Data can also be read from a URL or from an SQL database (using JDBC) Pre-processing tools in WEKA are called “filters” WEKA contains filters for:  Discretization, normalization, resampling, attribute selection, transforming and combining attributes, …

March 25,2004 Columbia University 7

March 25,2004 Columbia University 8

March 25,2004 Columbia University 9

March 25,2004 Columbia University 10

March 25,2004 Columbia University 11

March 25,2004 Columbia University 12 Explorer: building “classifiers” Classifiers in WEKA are models for predicting nominal or numeric quantities Implemented learning schemes include:  Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, … “Meta”-classifiers include:  Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, …

March 25,2004 Columbia University 13

March 25,2004 Columbia University 14

March 25,2004 Columbia University 15

March 25,2004 Columbia University 16

March 25,2004 Columbia University 17

March 25,2004 Columbia University 18

March 25,2004 Columbia University 19

March 25,2004 Columbia University 20

March 25,2004 Columbia University 21

March 25,2004 Columbia University 22

March 25,2004 Columbia University 23

March 25,2004 Columbia University 24

March 25,2004 Columbia University 25

March 25,2004 Columbia University 26

March 25,2004 Columbia University 27

March 25,2004 Columbia University 28

March 25,2004 Columbia University 29

March 25,2004 Columbia University 30

March 25,2004 Columbia University 31

March 25,2004 Columbia University 32

March 25,2004 Columbia University 33

March 25,2004 Columbia University 34

March 25,2004 Columbia University 35

March 25,2004 Columbia University 36

March 25,2004 Columbia University 37 Explorer: clustering data WEKA contains “clusterers” for finding groups of similar instances in a dataset Implemented schemes are:  k-Means, EM, Cobweb, X-means, FarthestFirst Clusters can be visualized and compared to “true” clusters (if given) Evaluation based on loglikelihood if clustering scheme produces a probability distribution

March 25,2004 Columbia University 38 Explorer: finding associations WEKA contains an implementation of the Apriori algorithm for learning association rules  Works only with discrete data Can identify statistical dependencies between groups of attributes:  milk, butter  bread, eggs (with confidence 0.9 and support 2000) Apriori can compute all rules that have a given minimum support and exceed a given confidence

March 25,2004 Columbia University 39 Explorer: attribute selection Panel that can be used to investigate which (subsets of) attributes are the most predictive ones Attribute selection methods contain two parts:  A search method: best-first, forward selection, random, exhaustive, genetic algorithm, ranking  An evaluation method: correlation-based, wrapper, information gain, chi-squared, … Very flexible: WEKA allows (almost) arbitrary combinations of these two

March 25,2004 Columbia University 40 Explorer: data visualization Visualization very useful in practice: e.g. helps to determine difficulty of the learning problem WEKA can visualize single attributes (1-d) and pairs of attributes (2-d)  To do: rotating 3-d visualizations (Xgobi-style) Color-coded class values “Jitter” option to deal with nominal attributes (and to detect “hidden” data points) “Zoom-in” function

March 25,2004 Columbia University 41

March 25,2004 Columbia University 42

March 25,2004 Columbia University 43 Performing experiments Experimenter makes it easy to compare the performance of different learning schemes For classification and regression problems Results can be written into file or database Evaluation options: cross-validation, learning curve, hold- out Can also iterate over different parameter settings Significance-testing built in!

March 25,2004 Columbia University 44

March 25,2004 Columbia University 45

March 25,2004 Columbia University 46

March 25,2004 Columbia University 47

March 25,2004 Columbia University 48

March 25,2004 Columbia University 49

March 25,2004 Columbia University 50

March 25,2004 Columbia University 51

March 25,2004 Columbia University 52

March 25,2004 Columbia University 53

March 25,2004 Columbia University 54

March 25,2004 Columbia University 55 Conclusion: try it yourself! WEKA is available at  Also has a list of projects based on WEKA  WEKA contributors: Abdelaziz Mahoui, Alexander K. Seewald, Ashraf M. Kibriya, Bernhard Pfahringer, Brent Martin, Peter Flach, Eibe Frank,Gabi Schmidberger,Ian H. Witten, J. Lindgren, Janice Boughton, Jason Wells, Len Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall,Remco Bouckaert, Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylvain Roy, Tony Voyle, Xin Xu, Yong Wang, Zhihai Wang