A Family of Quantum Protocols Igor Devetak, IBM Aram Harrow, MIT Andreas Winter, Bristol quant-ph/0308044 IEEE Symposium on Information Theory June 28,

Slides:



Advertisements
Similar presentations
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Advertisements

Tony Short University of Cambridge (with Sabri Al-Safi – PRA 84, (2011))
I NFORMATION CAUSALITY AND ITS TESTS FOR QUANTUM COMMUNICATIONS I- Ching Yu Host : Prof. Chi-Yee Cheung Collaborators: Prof. Feng-Li Lin (NTNU) Prof. Li-Yi.
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/
Entropy in the Quantum World Panagiotis Aleiferis EECS 598, Fall 2001.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / RAC 2211 Lecture.
Information Theoretical Security and Secure Network Coding NCIS11 Ning Cai May 14, 2011 Xidian University.
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
Stronger Subadditivity Fernando G.S.L. Brandão University College London -> Microsoft Research Coogee 2015 based on arXiv: with Aram Harrow Jonathan.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
Quantum communication from Alice to Bob Andreas Winter, Bristol quant-ph/ Aram Harrow, MIT Igor Devetak, USC.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Gate robustness: How much noise will ruin a quantum gate? Aram Harrow and Michael Nielsen, quant-ph/0212???
Quantum Circuits for Clebsch- GordAn and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/ more.
DEFENSE!. Applications of Coherent Classical Communication and Schur duality to quantum information theory Aram Harrow MIT Physics June 28, 2005 Committee:
Avraham Ben-Aroya (Tel Aviv University) Oded Regev (Tel Aviv University) Ronald de Wolf (CWI, Amsterdam) A Hypercontractive Inequality for Matrix-Valued.
Toyohiro Tsurumaru (Mitsubishi Electric Corporation) Masahito Hayashi (Graduate School of Information Sciences, Tohoku University / CQT National University.
General Entanglement-Assisted Quantum Error-Correcting Codes Todd A. Brun, Igor Devetak and Min-Hsiu Hsieh Communication Sciences Institute QEC07.
Gentle tomography and efficient universal data compression Charlie Bennett Aram Harrow Seth Lloyd Caltech IQI Jan 14, 2003.
Coherent Classical Communication Aram Harrow (MIT) quant-ph/
Torun, 5 June Symposium on Mathematical Physics N.Copernicus University Efficient Generation of Generic Entanglement Oscar C.O. Dahlsten with Martin.
Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 13 June 22, 2005
Quantum Convolutional Coding with Entanglement Assistance Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Quantum Shannon Theory Patrick Hayden (McGill) 17 July 2005, Q-Logic Meets Q-Info.
Introduction to Quantum Shannon Theory Patrick Hayden (McGill University) 12 February 2007, BIRS Quantum Structures Workshop | 
1 Statistical NLP: Lecture 5 Mathematical Foundations II: Information Theory.
1 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Richard Cleve QNC 3129 Lecture 18 (2014)
Is Communication Complexity Physical? Samuel Marcovitch Benni Reznik Tel-Aviv University arxiv
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
ENTROPIC CHARACTERISTICS OF QUANTUM CHANNELS AND THE ADDITIVITY PROBLEM A. S. Holevo Steklov Mathematical Institute, Moscow.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
A Few Simple Applications to Cryptography Louis Salvail BRICS, Aarhus University.
The Operational Meaning of Min- and Max-Entropy
1 Information and interactive computation January 16, 2012 Mark Braverman Computer Science, Princeton University.
User Cooperation via Rateless Coding Mahyar Shirvanimoghaddam, Yonghui Li, and Branka Vucetic The University of Sydney, Australia IEEE GLOBECOM 2012 &
Rei Safavi-Naini University of Calgary Joint work with: Hadi Ahmadi iCORE Information Security.
The private capacities of a secret shared reference frame Patrick Hayden (McGill) with: PRA 75: (2005) ??? Stephen Bartlett Robert Spekkens arXiv:quant-ph/
The Operational Meaning of Min- and Max-Entropy Christian Schaffner – CWI Amsterdam, NL joint work with Robert König – Caltech Renato Renner – ETH Zürich,
Counterexamples to the maximal p -norm multiplicativity conjecture Patrick Hayden (McGill University) || | | N(½)N(½) p C&QIC, Santa Fe 2008.
The mother of all protocols: restructuring quantum information’s family tree by Anura Abeyesinghe, Igor Devetak, Patrick Hayden, and Andreas Winter Proceedings.
Information Theory for Data Streams David P. Woodruff IBM Almaden.
Quantum Key Distribution Chances and Restrictions Norbert Lütkenhaus Emmy Noether Research Group Institut für Theoretische Physik I Universität Erlangen-Nürnberg.
Computer Vision – Compression(1) Hanyang University Jong-Il Park.
Quantum Information Theory Patrick Hayden (McGill) 4 August 2005, Canadian Quantum Information Summer School.
H ij Entangle- ment flow multipartite systems [1] Numerically computed times assuming saturated rate equations, along with the lower bound (solid line)
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
Quantum correlations with no causal order OgnyanOreshkov, Fabio Costa, ČaslavBrukner Bhubaneswar arXiv: December2011 Conference on Quantum.
The Classically Enhanced Father Protocol
Quantum Coding with Entanglement Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of Southern.
Detecting Incapacity Graeme Smith IBM Research Joint Work with John Smolin QECC 2011 December 6, 2011 TexPoint fonts used in EMF. Read the TexPoint manual.
Optimal Trading of Classical Communication, Quantum Communication, and Entanglement Mark M. Wilde arXiv: ERATO-SORST Min-Hsiu Hsieh 4 th Workshop.
1 Lecture 7 System Models Attributes of a man-made system. Concerns in the design of a distributed system Communication channels Entropy and mutual information.
Coherent Classical Communication Aram Harrow, MIT Quantum Computing Graduate Research Fellow Objective Objective ApproachStatus Determine.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Multipartite Entanglement and its Role in Quantum Algorithms Special Seminar: Ph.D. Lecture by Yishai Shimoni.
Quantum Cryptography Antonio Acín
Dualities in quantum information theory Igor Devetak CSI, EE-S, USC quant-ph/
B OUNDS ON E NTANGLEMENT D ISTILLATION & S ECRET K EY A GREEMENT C APACITIES FOR Q UANTUM B ROADCAST C HANNELS Kaushik P. Seshadreesan Joint work with.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
1 Transactional Nature of Quantum Information Subhash Kak Computer Science, Oklahoma State Univ © Subhash Kak, June 2009.
UNIT I. Entropy and Uncertainty Entropy is the irreducible complexity below which a signal cannot be compressed. Entropy is the irreducible complexity.
Random Access Codes and a Hypercontractive Inequality for
Information Complexity Lower Bounds
Unconstrained distillation capacities of
Quantum Information Theory Introduction
Presentation transcript:

A Family of Quantum Protocols Igor Devetak, IBM Aram Harrow, MIT Andreas Winter, Bristol quant-ph/ IEEE Symposium on Information Theory June 28, 2004

outline Introduction – basic concepts and resource inequalities. A family of protocols –Rederive and connect old protocols –Prove new protocols (parents) Optimal trade-off curves

cbit[c ! c]1 noiseless bit channel ebit[qq]the state (|0 i A |0 i B + |1 i A |1 i B )/ p 2 qubit[q ! q]1 noiseless qubit channel noisy state {qq}  noisy bipartite quantum state  AB noisy channel {q ! q} N noisy cptp map: N : H A’ !H B Information processing resources may be: classical / quantumc / q noisy / noiseless (unit){ } / [ ] dynamic / static ! / ¢ examples of bipartite resources

Church of the larger Hilbert space static  AB ) purification |  i ABE s.t.  AB = tr E  ABE. |  i AA’ UNUN A A0A0 B E |  i ABE Channel N : H A’ !H B ) isometric extension U N : H A’ !H B ­H E s.t. N (  ) = tr E U N (  ). Use a test source |  i AA’ and define |  i ABE = (I A ­ U N )|  i AA’

information theoretic quantities von Neumann entropy: H(A)  = -tr [  A log  A ] mutual information: I(A:B) = H(A) + H(B) – H(AB) coherent information: I c (A i B) = H(B) – H(AB)

resource inequalities Example: quantum channel coding {q ! q} N > I c (A i B)  [q ! q] Meaning there exists an asymptotic and approximate protocol transforming the LHS into the RHS. For any  >0 and any R<I c (A i B) and for sufficiently large n there exist encoding and decoding maps E : H 2 ­ nR ! H A’ ­ n and D : H B ­ n ! H 2 ­ nR such that for any input |  i2H 2 ­ n, ( D ¢ N ­ n ¢ E )|  i ¼  |  i The capacity is given by lim n !1 (1/n) max  I c (A i B) , where the maximization is over all  arising from N ­ n.

main result #1: parent protocols father: {q ! q} + ½ I(A:E) [qq] > ½ I(A:B) [q ! q] mother: {qq} + ½ I(A:E) [q ! q] > ½ I(A:B) [qq] Basic protocols combine with parents to get children. (TP)2[c ! c] + [qq] > {q ! q} (SD)[q ! q] + [qq] > 2[c ! c] (QE)[q ! q] > [qq]

the family tree  {q ! q} + ½ I(A:E) [qq] > ½ I(A:B) [q ! q]  {qq} + ½ I(A:E) [q ! q] > ½ I(A:B) [qq] {q ! q} + H(A) [qq] > I(A:B) [c ! c] BSST, [IEEE IT 48, 2002], E-assisted cap. {q ! q} > I c (A i B) [q ! q] L/S/D, quantum channel cap. {qq} + H(A) [q ! q] > I(A:B) [c ! c] H 3 LT, [QIC 1, 2001], noisy SD {qq} + I(A:B) [c ! c] > I c (A i B) [q ! q] DHW, noisy TP SD QE TPSD TP {qq} + I(A:E) [c ! c] > I c (A i B) [q ! q] DW, entanglement distillation TP (TP) 2[c ! c] + [qq] > {q ! q} (SD)[q ! q] + [qq] > 2[c ! c] (QE)[q ! q] > [qq]

coherent classical communication rule I: X + C [c ! c] > Y ) X + C/2 ( [q ! q] – [qq] ) > Y rule O: X > Y + C [c ! c] ) X > Y + C/2 ( [q ! q] + [qq] ) Whenever the classical message in the original protocol is almost uniformly distributed and is almost decoupled from the remaining quantum state of Alice, Bob and Eve. based on PRL 92, (2004)

generating the parents  {q ! q} + ½ I(A:E) [qq] > ½ I(A:B) [q ! q]  {qq} + ½ I(A:E) [q ! q] > ½ I(A:B) [qq] {q ! q} + H(A) [qq] > I(A:B) [c ! c] BSST, [IEEE IT 48, 2002], E-assisted cap. {q ! q} > I c (A i B) [q ! q] L/S/D, quantum channel cap. {qq} + H(A) [q ! q] > I(A:B) [c ! c] H 3 LT, [QIC 1, 2001], noisy SD {qq} + I(A:B) [c ! c] > I c (A i B) [q ! q] DHW, noisy TP SD QE TPSD TP {qq} + I(A:E) [c ! c] > I c (A i B) [q ! q] DW, entanglement distillation TP O O I

I(A:B)/2 [BSST; quant-ph/ ] H(A)+I(A:B) main result #2: tradeoff curves Q : qubits sent per use of channel E : ebits allowed per use of channel I c (A>B) [L/S/D] qubit > ebit bound 45 o example: quantum channel capacity with limited entanglement

father trade-off curve Q : qubits sent per use of channel E : ebits allowed per use of channel I c (A i B) [L/S/D] 45 o I(A:E)/2 = I(A:B)/2 - I c (A i B) I(A:B)/2 father

tradeoff techniques measurement compression: [Winter, IEEE IT 45, 1999] An instrument T:A ! AEX A X B can be simulated on |  i AR using I(X:R) [c ! c] + H(X|R) [cc]. derandomization: If the output state is pure, [cc] inputs are unnecessary. piggybacking: Time-sharing protocol P x with probability p x allows an extra output of I(X:B) [c ! c]. [DS, quant-ph/ ]

mother trade-off curve {qq} + ½ I(A:E) [q ! q] > ½ I(A:B)[qq] preprocessing instrument T:A ! AE’X {qq} + ½ I(A:EE’|X) [q ! q] + H(X)[c ! c] > ½ I(A:B|X)[qq] H(X) [c ! c] measurement compression I(X:BE) [c ! c] + H(X|BE) [cc] I(X:BE) [c ! c] derandomization ½ I(X:BE) ( [q ! q] – [qq] ) rule I {qq} + ½ (I(A:EE’|X) + I(X:BE)) [q ! q] > ½ (I(A:B|X) + I(X:BE)) [qq]

what’s left In quant-ph/ , we prove similar tradeoff curves for the rest of the resource inequalities in the family. Remaining open questions include – Finding single-letter formulae (i.e. additivity) – Reducing the optimizations over instruments – Addressing two-way communication – Multiple noisy resources