Simulating Optical Processes Using Geant4

Slides:



Advertisements
Similar presentations
Advanced Neutron Spectrometer (ANS) Geant4 Simulations
Advertisements

Optical sources Lecture 5.
X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
Isotope characteristics differ U U
W. Clarida, HCAL Meeting, Fermilab Oct. 06 Quartz Plate Calorimeter Prototype Geant4 Simulation Progress W. Clarida The University of Iowa.
Bulk Scintillator Light Yield  We have prepared samples of bulk scintillator in order to study optimization for the MICE Fiber Tracker  pT(1.25%) + 3HF(.1-1%)
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
14 User Documents and Examples I SLAC Geant4 Tutorial 3 November 2009 Dennis Wright Geant4 V9.2.p02.
May be regarded as a form of electromagnetic radiation, consisting of interdependent, mutually perpendicular transverse oscillations of an electric and.
OPTICAL FIBER WAVEGUIDE Optical Fiber Waveguides An Optical Fiber is a dielectric waveguide that operates at optical frequencies Normally cylindrical.
In this event 240 eV electron is passing through the MICE Cerenkov detector.
14 Overview of Geant4 Examples 2 nd Finnish Geant4 Workshop 6-7 June 2005 Dennis Wright (SLAC)
27 Jun 2005S. Kahn -- Tof/Ckov Status1 Status of TOF and Ckov Sub- packages in G4Mice Steve Kahn 27 June 2005.
P. Gumplinger - GEANT4 Users' Workshop Cover Sheet Optical Photon Processes in GEANT4 Peter Gumplinger, TRIUMF/GEANT4 Users’ Workshop at SLAC, February.
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
17-19 Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan 2007 Geant4 Japan.
Physics III: Cuts, Decay and Optical Physics Geant4 Tutorial at Jefferson Lab 10 July 2012 Dennis Wright (SLAC) Geant4 9.6 beta.
1 Tianchi Zhao University of Washington Concept of an Active Absorber Calorimeter A Summary of LCRD 2006 Proposal A Calorimeter Based on Scintillator and.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
EXL/crystal simulations B. Genolini Simulation of NUSTAR crystals with Litrani Presentation of Litrani: simulation of.
14 Overview of Geant4 Examples Geant4 Tutorial 8-10 March 2004 Dennis Wright (SLAC)
Study of response uniformity of LHCb ECAL Mikhail Prokudin, ITEP.
Attenuation by absorption and scattering
02/25/05© 2005 University of Wisconsin Last Time Meshing Volume Scattering Radiometry (Adsorption and Emission)
Development of A Scintillation Simulation for Carleton EXO Project Rick Ueno Under supervision of Dr. Kevin Graham.
User Documents and Examples I Sébastien Incerti Slides thanks to Dennis Wrigth, SLAC.
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
1 Fast Timing via Cerenkov Radiation‏ Earle Wilson, Advisor: Hans Wenzel Fermilab CMS/ATLAS Fast Timing Simulation Meeting July 17,
Monte Carlo Comparison of RPCs and Liquid Scintillator R. Ray 5/14/04  RPCs with 1-dimensional readout (generated by RR) and liquid scintillator with.
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
Beam test results of Tile/fiber EM calorimeter and Simulator construction status 2005/03/05 Detector Niigata University ONO Hiroaki contents.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
9-June-2003NDM2003 M. Nomachi M. Nomachi OSAKA University and MOON collaboration MOON (Mo Observatory Of Neutrinos) for double beta decay Photo by
We report the result of a beam test on a prototype of Astronomical hard X-ray/soft gamma-ray Polarimeter, PoGO (Polarized Gamma-ray Observer). PoGO is.
Marc Schröder, FUB Tutorial, De Bilt, 10.´04 Photon path length distributions and detailed microphysical parameterisations Marc Schröder Institut für Weltraumwissenschaften,
F.X. Gentit1 Litrani, a Monte-Carlo for optical photons Built upon ROOT. Use the old, simpler geometry of ROOT. A photon strictly obeys the Maxwell equations.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
Detector Simulation Presentation # 3 Nafisa Tasneem CHEP,KNU  How to do HEP experiment  What is detector simulation?
Generating Primary Particles Each Geant4 Event starts with generation of one or multiple primary particles It is up to the user to define primary particle.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
Simulations Report E. García, UIC. Run 1 Geometry Radiator (water) 1cm x 2cm x 2cm with optical properties Sensitive Volume (hit collector) acrylic (with.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
O. Atramentov, American Linear Collider Workshop, Cornell U July 2003 Fast gas Cherenkov Luminosity Monitor Progress Update O. Atramentov, J.Hauptman.
Quartz Plates R&D Status By F. Duru, S. Ayan, U. Akgun, J. Olson, Y. Onel The University Of Iowa V.Podrasky, C. Sanzeni, D.R.Winn Fairfield University.
MCP-PET: Geant4 Simulation Geometry Implementations 1. Similar to the last report (polished surface). Scintillator : LSO, LaBr3 # of layers : 5 -> 4 Area.
Simulations of Light Collection Efficiency (JLab Hall C 12 GeV Kaon Aerogel Detector) Laura Rothgeb Nuclear Physics Group Catholic University of America.
V.Ivanchenko Salamanca1 Geant4: Electromagnetic Processes 1  Introduction  Interfaces  PhysicsList  Optical process.
Scan ~100 bar entry positions with laser diode measures transmitted intensity (relative to reference intensity) determine attenuation length (Λ) by aiming.
Progress Report on GEANT Study of Containerized Detectors R. Ray 7/11/03 What’s New Since Last Time?  More detailed container description in GEANT o Slightly.
TOF Reconstruction, Calibration & Test-beam Simulation Jiang Linli 2005/6/1 (13th BES Annual Meeting )
The Double Chooz Monte Carlo (selected topics !) Dario Motta (Irfu/SPP) Anatael Cabrera (APC)
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
ArgonneResult_ ppt1 Comparison of data and simulation of Argonne Beam Test July 10, 2004 Tsunefumi Mizuno
Geant4 optics Giovanni Santin On behalf of the Geant4 collaboration
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Simulation and reconstruction of CLAS12 Electromagnetic Calorimeter in GSIM12 S. Stepanyan (JLAB), N. Dashyan (YerPhI) CLAS12 Detector workshop, February.
Simulation & Reconstruction
Detailed Simulation of Crystals short update
Software development status in Rome
KM2A Electron Detector Optimization
User Documents and Examples I
Geant4 Simulation :MCP PET
Simulation of optical processes in GEANT4
Detector Configuration for Simulation (i)
Physics III: Cuts, Decay and Optical Physics
Geant4: Electromagnetic Processes 3 V.Ivanchenko, BINP & CERN
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Physics 4 – April 6, 2018 P3 Challenge –
Chap. 6. Optical Properties
Presentation transcript:

Simulating Optical Processes Using Geant4 Simulating Optical Processes Using Geant4: Scintillating Cells and WLS Fibers Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 G4OpticalPhoton Optical Photon: λ >> atomic spacing define: G4OpticalPhoton::OpticalPhoton() No smooth transition: G4OpticalPhoton <=|=> G4Gamma possible to set polarization: photon->SetPolarization(px, py, pz); Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Optical Photon Production Cerenkov Process Scintillation Process Transition Radiation Processes affecting Optical Photons Refraction and Reflection Bulk Absorption Rayleigh Scattering Simulating Optical Processes Using Geant4

General Material Properties const G4int n = 9; // distribution of optical photons produced in eV G4double pp[n] = {2.0*eV,2.2*eV,2.4*eV,2.6*eV,2.8*eV,3.0*eV,3.1*eV,3.3*eV,3.5*eV}; // refraction index G4double rind[n] = {1.58, 1.58, 1.58, 1.58,1.58, 1.58, 1.58, 1.58,1.58}; // absorption length G4double absl[n] = {210.*cm, 210.*cm, 210.*cm, 210.*cm, 210.*cm, 210.*cm, 210.*cm, 210.*cm, 210.*cm}; // create material properties table and setup parameters “keyed” on pp G4MaterialPropertiesTable *mpt = new G4MaterialPropertiesTable(); mpt->AddProperty(“RINDEX”,pp,rind,n); mpt->AddProperty(“ABSLENGTH”,pp,absl,n); aG4Material->SetMaterialPropertiesTable(mpt); Simulating Optical Processes Using Geant4

Scintillation Process number of photons generated is proportional to the energy lost during the step emission spectrum sampled from empirical spectra Isotropic emission Uniform along the track segment With random linear polarization Emission time spectra with one exponential decay time constant * *All points taken from Source 1. Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Scintillation Code Physics List theScintillationProcess->SetScintillationYieldFactor(1.); theScintillationProcess->SetTrackSecondariesFirst(true); Detector Construction G4MaterialPropertiesTable *mpt = new G4MaterialPropertiesTable(); // distribution of produced optical photons G4double scint[n] = {0.000134, 0.004432, 0.053991, 0.241971, 0.398942, 0.004432, 0.053991, 0.241971}; // refers to pp from “General Material Properties” mpt->AddProperty("SCINTILLATION", pp, scint, n); // define constants mpt->AddConstProperty("SCINTILLATIONYIELD",10000./MeV); mpt->AddConstProperty("FASTTIMECONSTANT",1.*ns); mpt->AddConstProperty("SLOWTIMECONSTANT",1.*ns); Simulating Optical Processes Using Geant4

Scintillation Parameters G4Scintillation Process may use ... SCINTILLATION FASTCOMPONENT SLOWCOMPONENT SCINTILLATIONYIELD RESOLUTIONSCALE FASTTIMECONSTANT SLOWTIMECONSTANT YIELDRATIO Simulating Optical Processes Using Geant4

G4BoundaryProcess and Surfaces reflection and refraction at physical volume surfaces GLISUR (Geant3) or UNIFIED (DETECT / TRIUMF) model define surface: G4LogicalBorderSurface(name, physVol1, physVol2, G4OpticalSurface) ... or G4LogicalSkinSurface G4OpticalSurfaceType: dielectric_metal, dielectric_dielectric G4OpticalSurfaceFinish: polished, polishedfrontpainted, polishedbackpainted, ground, groundfrontpainted, groundbackpainted no partial refraction / reflection See Sources 1 and 4 for examples and more details Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Surface Parameters Parameters Finish Model Type RINDEX SPECULARLOBECONSTANT BACKSCATTERCONSTANT REFLECTIVITY EFFICIENCY Possible Optical Surfaces cell to air cell to fiber cladding cladding to fiber core core / cladding to air Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 WLS Process Peter Gumplinger (TRIUMF) next Geant4 release (6.0) absorb photons of one wavelength and emit another inputs: WLSABSLENGTH, WLSCOMPONENT, WLSTIME See Source 2 Simulating Optical Processes Using Geant4

Optical Parameters Summary General PP (emission mom.) RINDEX ABSLENGTH WLS WLSABSLENGTH WLSCOMPONENT WLSTIME Possible Optical Surfaces cell to air cell to fiber cladding cladding to fiber core core / cladding to air Scintillation SCINTILLATION FASTCOMPONENT SLOWCOMPONENT SCINTILLATIONYIELD RESOLUTIONSCALE FASTTIMECONSTANT SLOWTIMECONSTANT YIELDRATIO Boundary Finish Model Type RINDEX SPECULARLOBECONSTANT BACKSCATTERCONSTANT REFLECTIVITY EFFICIENCY Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 cellsim Application project: /k2work/jeremy/cellsim screenshots: /k2work/jeremy/doc/cellsim Geant4 optical processes plus WLS Mokka 2 “base” physics hard coded geometry: cell : 6 x 2 x 24 fiber : r = 1 mm material parameters additional physics: G4OpBuilder, G4OpWLS (PG), OpPhysics user action / mandatory Geant4 classes GPS Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Low E mu- Fired from Top Simulating Optical Processes Using Geant4

Very Low E mu+ Illustrating Reflection Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Side View Simulating Optical Processes Using Geant4

Non-Isotropic Behavior Side Top (Does not include boundary processes.) Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Ideas and Plans hit / SD / readout scheme match geometry / materials of an actual cell setup > 1 cell for X-talk / multiple cell effects measurements UI commands for specifying cell dimensions, surface properties & composition at runtime compare with actual results from Sasha, et al examine why not always isotropic distributions along firing axis realistic values for material / process parameters test acurracy of Geant4 optical model Simulating Optical Processes Using Geant4

Simulating Optical Processes Using Geant4 Sources 1. Gumplinger, Optical Photon Processes in Geant4. [ http://geant4.slac.stanford.edu/UsersWorkshop/PDF/Peter/OpticalPhoton.pdf ] 2. Gumplinger, Photon Readout Simulations of Plastic Scintillator [...] [ http://www.triumf.ca/geant4-03/talks/05-Friday-PM-1/04-J.Archambault/WLS.ppt ] 3. Wright, Geant4 Advanced Physics Tutorial. [ http://geant4.slac.stanford.edu/g4cd/Slides/Fermilab/PhysicsTutor2.pdf ] 4. Geant4 User’s Guide for Application Developers: 5.2 Physics. [http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/TrackingAndPhysics/physicsProcess.html ] Simulating Optical Processes Using Geant4