Determination of optical and microphysical Properties of Water Clouds.

Slides:



Advertisements
Similar presentations
Marc Schröder et al., FUB BBC2 Workshop, De Bilt, 10.´04 Problems related to absorption dependent retrievals and their validation Marc Schröder 1, Rene.
Advertisements

Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Radiative Transfer Dr. X-Pol Microwave Remote Sensing INEL 6669
1/26 Multisensors clouds remote sensing from POLDER/MODIS AMS Madison, J. Riedi, 14 July 2006 Cloud Properties Retrieval from synergy between POLDER3/Parasol.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
3D Radiative Transfer in Cloudy Atmospheres: Diffusion Approximation and Monte Carlo Simulation for Thermal Emission K. N. Liou, Y. Chen, and Y. Gu Department.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
Atmospheric effect in the solar spectrum
BASIC RADIATIVE TRANSFER. RADIATION & BLACKBODIES Objects that absorb 100% of incoming radiation are called blackbodies For blackbodies, emission ( 
Radiative Properties of Clouds SOEE3410 Ken Carslaw Lecture 3 of a series of 5 on clouds and climate Properties and distribution of clouds Cloud microphysics.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Radiative Properties of Clouds ENVI3410 : Lecture 9 Ken Carslaw Lecture 3 of a series of 5 on clouds and climate Properties and distribution of clouds.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
METO 621 Lesson 12. Prototype problems in Radiative Transfer Theory We will now study a number of standard radiative transfer problems. Each problem assumes.
Satellite basics Estelle de Coning South African Weather Service
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Ten Years of Cloud Optical/Microphysical Measurements from MODIS M. D. King 1, S. Platnick 2, and the entire MOD06 Team 1 Laboratory for Atmospheric and.
CDOP NWC SAF Workshop on Physical Retrieval of Clear Air Parameters from SEVIRI, 11 /2007 “Overview about MERIS NRT WV product utilizing WV absorption.
Orbit Characteristics and View Angle Effects on the Global Cloud Field
Intercomparisons of AIRS and NAST retrievals with Dropsondes During P- TOST (Pacific Thorpex Observational System Test) NASA ER-2 NOAA G-IV Dropsonde.
AGU 2002 Fall Meeting NASA Langley Research Center / Atmospheric Sciences Validation of GOES-8 Derived Cloud Properties Over the Southeastern Pacific J.
1 Center for S a t ellite A pplications and R esearch (STAR) Applicability of GOES-R AWG Cloud Algorithms for JPSS/VIIRS AMS Annual Meeting Future Operational.
USING OF METEOSAT SECOND GENERATION HIGH RESOLUTION VISIBLE DATA FOR THE IMPOVEMENT OF THE RAPID DEVELOPPING THUNDERSTORM PRODUCT Oleksiy Kryvobok Ukrainian.
Cloud Top Properties Bryan A. Baum NASA Langley Research Center Paul Menzel NOAA Richard Frey, Hong Zhang CIMSS University of Wisconsin-Madison MODIS Science.
Remote Sensing of Evapotranspiration with MODIS
BIOPHYS: A Physically-based Algorithm for Inferring Continuous Fields of Vegetative Biophysical and Structural Parameters Forrest Hall 1, Fred Huemmrich.
EG2234: Earth Observation Interactions - Land Dr Mark Cresswell.
1 Optimal Channel Selection. 2 Redundancy “Information Content” vs. “On the diagnosis of the strength of the measurements in an observing system through.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
WATER VAPOR RETRIEVAL OVER CLOUD COVER AREA ON LAND Dabin Ji, Jiancheng Shi, Shenglei Zhang Institute for Remote Sensing Applications Chinese Academy of.
Purpose To deepen your knowledge of satellite images' interpretation  Preparation for the succeeding part about summer convection.
Water Vapour & Cloud from Satellite and the Earth's Radiation Balance
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Using CALIPSO to Explore the Sensitivity to Cirrus Height in the Infrared.
Next Week: QUIZ 1 One question from each of week: –5 lectures (Weather Observation, Data Analysis, Ideal Gas Law, Energy Transfer, Satellite and Radar)
Improvement of Cold Season Land Precipitation Retrievals Through The Use of Field Campaign Data and High Frequency Microwave Radiative Transfer Model IPWG.
Cloud optical properties: modeling and sensitivity study Ping Yang Texas A&M University May 28,2003 Madison, Wisconsin.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
An Introduction to Optimal Estimation Theory Chris O´Dell AT652 Fall 2013.
Satellite based instability indices for very short range forecasting of convection Estelle de Coning South African Weather Service Contributions from Marianne.
Consistency of reflected moonlight based nighttime precipitation product with its daytime equivalent. Andi Walther 1, Steven Miller 3, Denis Botambekov.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
X X X Cloud Variables Top pressure Cloud type Effective radius
Bryan A. Baum, Richard Frey, Robert Holz Space Science and Engineering Center University of Wisconsin-Madison Paul Menzel NOAA Many other colleagues MODIS.
SEMIANALYTICAL CLOUD RETRIEVAL ALGORITHM AND ITS APPLICATION TO DATA FROM MULTIPLE OPTICAL INSTRUMENTS ON SPACEBORNE PLATFORMS: SCIAMACHY, MERIS, MODIS,
Cloud Optical & Microphysical Properties (M. D. King, S. Platnick, M
Initial Analysis of the Pixel-Level Uncertainties in Global MODIS Cloud Optical Thickness and Effective Particle Size Retrievals Steven Platnick 1, Robert.
MODIS Atmosphere Data Products and Science Results Steven Platnick 1,2 Michael D. King, 2 W. Paul Menzel, 3 Yoram J. Kaufman, 2 Steve Ackerman, 4 Didier.
Generation of TOA Radiative Fluxes from the GERB Instrument Data. Part II: First Results Nicolas Clerbaux and GERB team Royal Meteorological Institute.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
S. Platnick 1, M. D. King 1, J. Riedi 2, T. Arnold 1,3, B. Wind 1,3, G. Wind 1,3, P. Hubanks 1,3 and S. Ackerman 4, R. Frey 4, B. Baum 4, P. Menzel 4,5,
Michael D. King, EOS Senior Project ScientistMarch 21, Early Results from the MODIS Atmosphere Algorithms Michael D. King, 1 Steven Platnick, 1,2.
O. Yevteev, M. Shatunova, V. Perov, L.Dmitrieva-Arrago, Hydrometeorological Center of Russia, 2010.
Rob Roebeling CloudNET meeting 18 – 19 October 2004, Delft METEOSAT-8 OBSERVATIONS AND DERIVED CLOUD MICROPHYSICAL PROPERTIES.
1 Atmospheric Radiation – Lecture 13 PHY Lecture 13 Remote sensing using emitted IR radiation.
University of Oxford EUMETSAT Satellite Conference 2004 Aerosol Retrieval Algorithm for Meteosat Second Generation Sam Dean, Steven Marsh and Don Grainger.
Spatial & Temporal Distribution of Cloud Properties observed by MODIS: Preliminary Level-3 Results from the Collection 5 Reprocessing Michael D. King,
NASA, CGMS-44, 7 June 2016 Coordination Group for Meteorological Satellites - CGMS LIMB CORRECTION OF POLAR- ORBITING IMAGERY FOR THE IMPROVED INTERPRETATION.
NMSC Daytime Cloud Optical and Microphysical Properties (DCOMP) 이은희.
Rob Roebeling, Hartwig Deneke and Arnout Feijt GEWEX Cloud Assessment Meeting Madison, United States of America 6 -7 July 2006 "METEOSAT-8 (SEVIRI) CLOUD.
Solar Constant Emissivity Albedo
Visible vicarious calibration using RTM
D e v e l o p m e n t o f t h e M N I R-S W I R a n d AA a t m o s p h e r I c c o r r e c t I o n a n d s u s p e n d e d s e d I m e n t c.
Vicarious calibration by liquid cloud target
Hyperspectral Wind Retrievals Dave Santek Chris Velden CIMSS Madison, Wisconsin 5th Workshop on Hyperspectral Science 8 June 2005.
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Optical particle sizing in vertically inhomogeneous turbid media
Studying the cloud radiative effect using a new, 35yr spanning dataset of cloud properties and radiative fluxes inferred from global satellite observations.
Presentation transcript:

Determination of optical and microphysical Properties of Water Clouds

 LCRS 2004 Retrieved Parameters  Cloud optical thickness  Cloud effective droplet radius  Cloud top height  Liquid water path  Thermodynamic phase

 LCRS 2004 Retrieved Parameters – Mathematical formulation  Effective cloud droplet radiusOptical thickness

 LCRS 2004 Basic concept of optical retrievals  reflectance / emission of a cloud  microphysical cloud parameters

 LCRS 2004 Reflection Function  = ratio of reflected light intensity of a cloud to that of an ideal Lambertian white reflector  for Lambertian ideally white reflector  Clouds are not a Lambertian reflector   geometric dependence of R   transmission of incident radiation

 LCRS 2004 Reflection Function – Geometric Dependence  Exact radiative transfer code (Mishchenko et al. 1999) using Gamma size distribution: 1

 LCRS 2004 Reflection Function – Transmission  = reflection function of a semi-infinite, non-abs. cloud  = global transmittance of a cloud  = asymmetry parameter  = escape functions  VIS: Reflection reduces due to transmission

 LCRS 2004 Dependence of R VIS on    a ef   Reflection function of clouds in VIS  depends strongly on optical thickness  depends weakly on a ef (Kokhanovsky et al. 2003)

 LCRS 2004 Reflection Function – NIR  NIR: Reflection reduces due to transmission and weak absorption   Satellite signal is composed of a) solar component and b) thermal component  = reflection function of a semi-infinite cloud  = diffusion exponent  = escape functions

 LCRS 2004 Dependence of R NIR on    a ef   Reflection function of clouds in NIR (weakly absorbing)  depends strongly on a ef  depends moderately on optical thickness (Kokhanovsky et al. 2003)

 LCRS 2004 Dependence of R NIR a ef Large droplets  Volume is dominant parameter  Absorption > Reflection Small droplets  Cross-section is dominant parameter  Reflection > Absorption

 LCRS 2004 Dependence of R on    a ef  for VIS and NIR Sensor Signal Parameter VISNIR  very strongmoderate a ef weakvery strong

 LCRS 2004 Dependence of Radiance Density on    a ef   Retrieval of cloud parameters is possible with VIS / NIR bands of satellite sensors

 LCRS 2004 Examples of suitable systems – Meteosat-8 SEVIRI  Meteosat-8  Eumetsat  geostationary orbit (0°)  launch:  operational since 4/2004  available at least up to 2012  SEVIRI Sensor  repetition: 15 minutes  12 bands:  2 VIS (3km)  2 NIR (3km)  7 WV/IR (3km)  1 HRV (1km)

 LCRS 2004 Examples of suitable systems – Terra-/Aqua-MODIS  Terra & Aqua  NASA (EOS)  sun-synchronous orbit  Terra  launch  EOS-AM (10:30 south)  Aqua  launch  EOS-PM (13:30 north)  MODIS Sensor  36 bands (0,62 – 14,39 µm)  resolution 1km  2 VIS (250m)  5 VIS/NIR (500m)

 LCRS 2004 Retrieval Concepts  Look-up table approach  = satellite signal is iteratively lined with pre-calculated look-up tables connecting cloud microphysical parameters with measured radiance density in VIS/NIR bands.  GTR (T. Nakajima, T. Y. Nakajima, Kawamoto)  NASA MOD06 (Platnick, King, Ackerman, Menzel, Baum, Riédi, Frey)  Semianalytical approach  = satellite signal is used for the solution of a simplified, single semi- analytical equation which is derived from exact radiative transfer equations.  SACURA (Kokhanovsky)

 LCRS 2004 Example 1 - GTR  Look-up table approach  GTR retrieval  T. Nakajima, T. Y. Nakajima, Kawamoto

 LCRS 2004 GTR – Extraction of Radiance Density from Signal  VIS  NIR ground reflection cloud thermal componentground thermal component

 LCRS 2004 GTR - Preparation of LUTs  Grid system of LUTs  1.,2.,4.,6.,9.,14.,20.,30.,50.,70. 2.,4.,6.,9.,12.,15.,20.,25.,30.,35.,40. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60.,65.,70. 0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.  Liquid water content for several classified cloud types  Cu, Sc0.300 g/m 3 As, Ac0.250 g/m 3 Ci, Cs, Cc0.014 g/m 3 Ns0.300 g/m 3 Cb0.393 g/m 3 St1.540 g/m 3 Pruppacher & Klett 1978, Heymsfield 1993

 LCRS 2004 GTR - Preparation of additional datasets  Cloud-free albedo maps (monthly mean – minimum map)  VIS and NIR (solar radiation only) band  6S code (Tanré 1990)  Cloud-free background BTT map (actual scene)  Multiple regression function  Latitude  Longitude  Height above sea level (DGM)  Temperature  Vertical profiles (actual scene)  MM5, Sounding data, etc.  Temperature  Humidity  Pressure

 LCRS 2004 GTR – Additional datasets Satellite data VIS / NIR bands Cloud-free albedo maps (6S) Cloud-free ground BBT map Radiative-Transfer-Calculation Radiance Density / BBT vs. microphysical Parameters Iteration Satellite data - LUTs Actual Atmosphere Profiles MM5 Sounding data

 LCRS 2004 GTR – Flow of Analysis (Kawamoto et al. 2001)

 LCRS 2004 GTR – Calculation of w, D and Z  Liquid water path  Geometrical thickness  Cloud-top height from vertical profile data

 LCRS 2004 GTR – Input Satellite Data Radiance density 0.6µm Radiance density 3.9µm [W/m 2 /µm/sr] [W/m 2 /µm/sr]

 LCRS 2004 GTR - Results Terra-MODIS, , 11:05 GMT Re[µm]  11µm T[K]

 LCRS 2004 Example 2 - SACURA  Semianalytical approach  SACURA retrieval  A. A. Kokhanovsky

 LCRS 2004 SACURA – Retrieval of a ef &  for 2 band algorithm 01  VIS  NIR  can be calculated by simple approximation equations

 LCRS 2004 SACURA – Retrieval of a ef &  for 2 band algorithm 02  from VIS:  from scaled optical thickness:  from other simplifications:     Substitution in R 2 retrieves a ef with a single transcendent equation    is retrieved subsequently with equation above

 LCRS 2004 SACURA - Results Terra-MODIS, , 11:05 GMT Re[µm]  11µm T[K]

 LCRS 2004 Error Estimation  Theoretical Errors

 LCRS 2004 Error Estimation - SACURA  Error of R due to simplification of semi-analytical equations (Kokhanovsky et al. 2003)

 LCRS 2004 Error Estimation - GTR  Error of retrieved parameters when applied to simulated satellite signals using  [5;10;15] at a ef 10µm and a ef [6;10;16µm] at  = 10. (Kawamoto et al. 2001)

 LCRS 2004 Intercomparison  Intercomparison  SACURA vs. GTR. vs MOD06

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 Terra-MODIS, , 15:30 GMT  a ef [µm] GTR SACURA MOD06

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06  a ef [µm] GTR SACURA MOD06

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 - a ef Terra-MODIS, , 15:30 GMT

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 -  Terra-MODIS, , 15:30 GMT

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Freq. Terra-MODIS, , 15:30 GMT

 LCRS 2004 Conclusion  Retrieval of a ef and  from satellite data is possible  Retrieval is one realization of the reality  LUT and asymptotic theory approaches have errors due to  Inhomogeneous clouds  Errors in additional datasets, partly cloud covered pixels etc.  Errors of asymptotic approach are negligible for optically thick clouds  Asymptotic equations can be simplified with negligible errors for  > 5

 LCRS 2004 Outlook  We will join efforts to implement a new version combining both approaches   > 10  semi-analytical equations   < 5  LUT approach  5 <  < 10  one of both but we will see….   Optimized algorithm with regard of  minimization of computer time and  minimization of errors

 LCRS 2004 Acknowledgments  Alexander A. Kokhanovsky

 LCRS 2004 Thank you  The End

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 Terra-MODIS, , 09:45 GMT a ef [µm]  GTR SACURA MOD06

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 - a ef Terra-MODIS, , 09:45 GMT

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 -  Terra-MODIS, , 09:45 GMT

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Freq. Terra-MODIS, , 09:45 GMT

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Delta Terra-MODIS, , 09:45 GMT

 LCRS 2004 SACURA – Lambert surface reflection  VIS  Large optical thickness  direct solar light term can be neglected  NIR  can be calculated by simple approximation equations

 LCRS 2004 Error Estimation - SACURA  Error of retrieved parameters due to measurement errors and  (Kokhanovsky et al. 2003)

 LCRS 2004 Geometry

 LCRS 2004 Compatibility SEVIRI – MODIS SEVIRIMODIS VIS 0,6Kanal 1 VIS 0,8Kanal 15 NIR 1,6Kanal 6 NIR 3,9Kanal 21 WV 6,2Kanal 27 WV 7,3Kanal 28 IR 8,7Kanal 29 IR 9,7Kanal 30 IR 10,8Kanal 31 IR 12,0Kanal 32 IR 13,4Kanal 33 / 34 HRV

 LCRS 2004 GTR - Preparation of LUTs  Grid system of LUTs  1.,2.,4.,6.,9.,14.,20.,30.,50.,70. 2.,4.,6.,9.,12.,15.,20.,25.,30.,35.,40. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60. 0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60.,65.,70. 0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.  Liquid water content for several classified cloud types  Cu, Sc0.300 g/m 3 As, Ac0.250 g/m 3 Ci, Cs, Cc0.014 g/m 3 Ns0.300 g/m 3 Cb0.393 g/m 3 St1.540 g/m 3 ISCCP, Rossow et al Pruppacher & Klett 1978, Heymsfield 1993

 LCRS 2004 Retrieved Parameters  Cloud optical thickness [ ] resp. [ ]  Cloud effective droplet radius[ µm] resp. [ µm]  Cloud top height [ km]  Liquid water path [… …g/m 2 ]  Thermodynamic phase (ice, water, mixed clouds)

 LCRS 2004 Intercomparison SACURA vs. GTR vs. MOD06 – Delta Terra-MODIS, , 15:30 GMT