Dr. Lo’ai Tawalbeh Fall 2005 Chapter 10 – Key Management; Other Public Key Cryptosystems Dr. Lo’ai Tawalbeh Computer Engineering Department Jordan University.

Slides:



Advertisements
Similar presentations
Key Management Nick Feamster CS 6262 Spring 2009.
Advertisements

Cryptography and Network Security Chapter 10
Public Key Algorithms …….. RAIT M. Chatterjee.
YSLInformation Security -- Public-Key Cryptography1 Elliptic Curve Cryptography (ECC) For the same length of keys, faster than RSA For the same degree.
Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
Elliptic Curve Cryptography (ECC) Mustafa Demirhan Bhaskar Anepu Ajit Kunjal.
Cryptography1 CPSC 3730 Cryptography Chapter 10 Key Management.
Elliptic Curve Cryptography Jen-Chang Liu, 2004 Adapted from lecture slides by Lawrie Brown Ref: RSA Security ’ s Official Guide to Cryptography.
Cryptography and Network Security Chapter 10 Fourth Edition by William Stallings.
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Chapter3 Public-Key Cryptography and Message Authentication.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
CPE5021 Advanced Network Security --- Advanced Cryptography: Elliptic Curve Cryptography --- Lecture 3 CPE5021 Advanced Network Security --- Advanced Cryptography:
Cryptography and Network Security Chapter 10. Chapter 10 – Key Management; Other Public Key Cryptosystems No Singhalese, whether man or woman, would venture.
By Abhijith Chandrashekar and Dushyant Maheshwary.
Public Key ECC, Hash. Elliptic Curve Cryptography  majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Key Management and Diffie- Hellman Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 12/3/2009 INCS 741: Cryptography 12/3/20091Dr. Monther.
Application of Elliptic Curves to Cryptography
Chapter 21 Public-Key Cryptography and Message Authentication.
Elliptic Curve Cryptography Implementation & PKI Adoption Brian Saville Jonathan Mitchell.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Cryptography and Network Security (CS435) Part Eight (Key Management)
Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
10.1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Asymmetric-Key Cryptography.
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
Chapter 3 (B) – Key Management; Other Public Key Cryptosystems.
Cryptography and Network Security Chapter 10
Cryptography and Network Security Key Management and Other Public Key Cryptosystems.
PUBLIC KEY CRYPTOGRAPHY ALGORITHM Concept and Example 1IT352 | Network Security |Najwa AlGhamdi.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Cryptography and Network Security
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
1 Chapter 10: Key Management in Public key cryptosystems Fourth Edition by William Stallings Lecture slides by Lawrie Brown (Modified by Prof. M. Singhal,
Public Key Algorithms Lesson Introduction ●Modular arithmetic ●RSA ●Diffie-Hellman.
Key Management Network Systems Security Mort Anvari.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
1 Network Security Dr. Syed Ismail Shah
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Lecture 9 Overview. Digital Signature Properties CS 450/650 Lecture 9: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Cryptography and Network Security Chapter 10 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
1 Chapter 3-3 Key Distribution. 2 Key Management public-key encryption helps address key distribution problems have two aspects of this: –distribution.
CIM3681: PKI 02 - Key Management1 Key Management Ch 10 of Cryptography and Network Security Third Edition by William Stallings Modified from lecture slides.
Diffie-Hellman Key Exchange first public-key type scheme proposed by Diffie & Hellman in 1976 along with the exposition of public key concepts – note:
Introduction to Elliptic Curve Cryptography CSCI 5857: Encoding and Encryption.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Key Management public-key encryption helps address key distribution problems have two aspects of this: – distribution of public keys – use of public-key.
Cryptography and Network Security Chapter 13
Public Key Cryptography. Asymmetric encryption is a form of cryptosystem in which Encryption and decryption are performed using the different keys—one.
Information Security Lab. Dept. of Computer Engineering 251/ 278 PART II Asymmetric Ciphers Key Management; Other CHAPTER 10 Key Management; Other Public.
Key Management By Dr. Shadi Masadeh.
CSCE 715: Network Systems Security
By Marwan Al-Namari Author: William Stallings
Cryptography and Network Security Chapter 10
Cryptography and Network Security Chapter 10
Chapter 10 – Key Management; Other Public Key Cryptosystems
Elliptic Curve Cryptography (ECC)
Chapter 10: Key Management (Again) and other Public Key Systems
Diffie-Hellman Key Exchange
Key Management Network Systems Security
CSCE 715: Network Systems Security
Cryptography and Network Security Chapter 10
CSCE 715: Network Systems Security
CSCE 715: Network Systems Security
Presentation transcript:

Dr. Lo’ai Tawalbeh Fall 2005 Chapter 10 – Key Management; Other Public Key Cryptosystems Dr. Lo’ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan CPE 542: CRYPTOGRAPHY & NETWORK SECURITY

Dr. Lo’ai Tawalbeh Fall 2005 Diffie-Hellman Key Exchange By Deffie-Hellman is a practical method for public exchange of a secret key used in a number of commercial products value of key depends on the participants (and their private and public key information) based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Dr. Lo’ai Tawalbeh Fall 2005 Diffie-Hellman Setup all users agree on global parameters: large prime integer or polynomial q α a primitive root mod q each user (eg. A) generates their key chooses a secret key (number): x A < q compute their public key: y A = α x A mod q each user makes public that key y A

Dr. Lo’ai Tawalbeh Fall 2005 Diffie-Hellman Key Exchange shared session key for users A & B is K AB : K AB = α x A. x B mod q = y A x B mod q (which B can compute) = y B x A mod q (which A can compute) K AB is used as session key in private-key encryption scheme between Alice and Bob if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys attacker needs an x, must solve discrete log

Dr. Lo’ai Tawalbeh Fall 2005 Diffie-Hellman Key Exchange

Dr. Lo’ai Tawalbeh Fall 2005 Diffie-Hellman Example users Alice & Bob who wish to swap keys: agree on prime q=353 and α=3 select random secret keys: A chooses x A =97, B chooses x B =233 compute public keys: y A = 3 97 mod 353 = 40 (Alice) y B = mod 353 = 248 (Bob) compute shared session key as: K AB = y B x A mod 353 = = 160 (Alice) K AB = y A x B mod 353 = = 160 (Bob)

Dr. Lo’ai Tawalbeh Fall 2005 Elliptic Curve Cryptography majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials imposes a significant load in storing and processing keys and messages an alternative is to use elliptic curves offers same security with smaller bit sizes

Dr. Lo’ai Tawalbeh Fall 2005 Real Elliptic Curves an elliptic curve is defined by an equation in two variables x & y, with coefficients consider a cubic elliptic curve of form y 2 = x 3 + ax + b where x,y,a,b are all real numbers also define zero point O have addition operation for elliptic curve geometrically sum of Q+R is reflection of intersection R

Dr. Lo’ai Tawalbeh Fall 2005 Real Elliptic Curve Example

Dr. Lo’ai Tawalbeh Fall 2005 Finite Elliptic Curves Elliptic curve cryptography uses curves whose variables & coefficients are finite have two families commonly used: prime curves E p (a,b) defined over Z p use integers modulo a prime best in software binary curves E 2 m (a,b) defined over GF(2 n ) use polynomials with binary coefficients best in hardware

Dr. Lo’ai Tawalbeh Fall 2005 Elliptic Curve Cryptography ECC addition is analog of modulo multiply ECC repeated addition is analog of modulo exponentiation need “hard” problem equiv to discrete log Q=kP, where Q,P belong to a prime curve is “easy” to compute Q given k,P but “hard” to find k given Q,P known as the elliptic curve logarithm problem Certicom example: E 23 (9,17)

Dr. Lo’ai Tawalbeh Fall 2005 ECC Diffie-Hellman can do key exchange analogous to D-H users select a suitable curve E p (a,b) select base point G=(x 1,y 1 ) with large order n s.t. nG=O A & B select private keys n A <n, n B <n compute public keys: P A =n A ×G, P B =n B ×G compute shared key: K=n A ×P B, K=n B ×P A same since K=n A ×n B ×G

Dr. Lo’ai Tawalbeh Fall 2005 ECC Encryption/Decryption several alternatives, will consider simplest must first encode any message M as a point on the elliptic curve P m select suitable curve & point G as in D-H each user chooses private key n A <n and computes public key P A =n A ×G to encrypt P m : C m ={kG, P m +k P b }, k random decrypt C m compute: P m +kP b –n B (kG) = P m +k(n B G)–n B (kG) = P m

Dr. Lo’ai Tawalbeh Fall 2005 ECC Security relies on elliptic curve logarithm problem fastest method is “Pollard rho method” compared to factoring, can use much smaller key sizes than with RSA etc for equivalent key lengths computations are roughly equivalent hence for similar security ECC offers significant computational advantages