Synergy Group for Front-End Electronics and DAQ (SGFD)

Slides:



Advertisements
Similar presentations
● EDAQ meetings ● NUSTAR DAQ architecture ● AGATA ancillary detector interface ● Data rates, etc. HISPEC/DESPEC Electronics & Data Acquisition Department.
Advertisements

Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
EXL/R3B Calorimeters- Readout from ASIC to DAQ Ian Lazarus STFC Daresbury Laboratory.
ESODAC Study for a new ESO Detector Array Controller.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
Workshop on Silicon Detector Systems, April at GSI Darmstadt 1 STAR silicon tracking detectors SVT and SSD.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
Trigger-less and reconfigurable data acquisition system for J-PET
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
A CMOS circuit for Silicon Drift Detectors readout
Synergy Program for Front-End, Electronics, Data Acquisition & Control JRA 30 Emanuel Pollacco CEA Saclay SGFDC for Nuclear Physics KVI, STFC Daresbury,
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
Napoli October 2007 WG3 - Pierre Edelbruck FAZIA WG3 – Front End Electronics.
Test Results on the n-XYTER, a self triggered, sparcifying readout ASIC Christian J. Schmidt et al., GSI Darmstadt TWEPP 2007, Prague, Sept. 3. – 7.
Silicon Strip Readout and the XYTER Electronics Development Christian J. Schmidt et al., GSI Darmstadt 10th CBM Collaboration Meeting, Dresden, Sept. 24.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
M. Labiche - INTAG workshop GSI May Se - D prototype for the focal plane of the PRISMA spectrometer (Task4) Digitisers for SAGE & LISA (task1)
Status n-XYTER and CBM-XYTER Christian J. Schmidt et al., GSI Darmstadt GSI, Darmstadt, Feb. 29 th 2008.
Understanding Data Acquisition System for N- XYTER.
AHCAL – DIF Interface EUDET annual meeting – Paris Oct M. Reinecke.
Development of Tracking Detector with GEM Kunihiro Fujita RCNP, Osaka Univ. Yasuhiro Sakemi CYRIC, Tohoku Univ. Masaharu Nomachi Dep. of Phys., Osaka Univ.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
Self triggered readout of GEM in CBM J. Saini VECC, Kolkata.
Parallel Data Acquisition Systems for a Compton Camera
Christian J. Schmidt 14th CBM Collaboration Meeting, Split, Oct. 6 – 9, 2009 CBM FEE Summary on CBM Technological Competence Buildup and Front-End ASIC.
Data Acquisition Backbone Core J. Adamczewski-Musch, N. Kurz, S. Linev GSI, Experiment Electronics, Data processing group.
NUMI Off Axis NUMI Off Axis Workshop Workshop Argonne Meeting Electronics for RPCs Gary Drake, Charlie Nelson Apr. 25, 2003 p. 1.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
News on GEM Readout with the SRS, DATE & AMORE
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Synergy Group for Front-End Electronics and DAQ (SGFD)
Status of the n-XYTER testing Knut Solvag, Gerd Modzel, Christian Schmidt, Markus Höhl, Andrea Brogna, Ullrich Trunk, Hans-Kristian Soltveit CBM.
12 September 2006Silicon Strip Detector Readout Module J. Hoffmann SIDEREM SIlicon Strip DEtector REadout Module.
Readout Architecture for MuCh Introduction of MuCh Layout of Much ( proposed several schemes) Read ASIC’s Key features Basic Readout chain ROC Block Diagram.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Villa Olmo, Como October 2001F.Giordano1 SiTRD R & D The Silicon-TRD: Beam Test Results M.Brigida a, C.Favuzzi a, P.Fusco a, F.Gargano a, N.Giglietto.
Front end electronics and system design for the NUSTAR experiments at the FAIR facility Presented by Ian Lazarus on behalf of NUSTAR collaboration FEE.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Institute of Basic Science Rare Isotope Science Project PANGEA P hoton detector system for A stro-science and N uclear physics with GE rmanium A rray 2015.
May 10-14, 2010CALOR2010, Beijing, China 1 Readout electronics of the ALICE photon spectrometer Zhongbao Yin *, Lijiao Liu, Hans Muller, Dieter Rohrich,
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
Beam detectors in Au+Au run and future developments - Results of Aug 2012 Au+Au test – radiation damage - scCVD diamond detector with strip metalization.
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Status of hardware activity in CNS Taku Gunji Center for Nuclear Study University of Tokyo 1.
 13 Readout Electronics A First Look 28-Jan-2004.
M. Tiemens, M. Kavatsyuk KVI, University of Groningen EMC Front-End Electronics for the Preassembly.
1 J.M. Heuser − STS R&D Johann M. Heuser, GSI CBM-STS Project Leader Meeting on Experiment with external HI beams of the Nuclotron-M JINR, 4 February 2011.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Modeling event building architecture for the triggerless data acquisition system for PANDA experiment at the HESR facility at FAIR/GSI Krzysztof Korcyl.
Beam detectors performance during the Au+Au runs in HADES
A General Purpose Charge Readout Chip for TPC Applications
Evidence for Strongly Interacting Opaque Plasma
Front-end and VME / VXI readout electronics for ASICs
INFN Pavia and University of Bergamo
DCH FEE 28 chs DCH prototype FEE &
Silicon Lab Bonn Physikalisches Institut Universität Bonn
Synergy Program for Front-End, Electronics, Data Acquisition & Control
A First Look J. Pilcher 12-Mar-2004
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Status of n-XYTER read-out chain at GSI
Example of DAQ Trigger issues for the SoLID experiment
PID meeting Mechanical implementation Electronics architecture
SVT detector electronics
Presentation transcript:

Synergy Group for Front-End Electronics and DAQ (SGFD) Initial Meeting 2005 R³B/EXL workshop NUSTAR/SPIRAL2  3 annual Meetings (GANIL, GSI, KVI… NUSTAR/SPIRAL2/Italy  … Legnaro… 2007 NUSTAR/SPIRAL2/Spain  … Huelva)  FP7 LoIs

SGFD scope for NUSTAR/FAIR experiments i. i.Integration FAIR Infrastructure controls coupling interconnects to other detection systems  e.g. AGATA ii. ii.Standardisation, Flexibility free coupling of different DAQ systems interconnects for triggers and control signals modularity of the system (local triggers / timestamps) ‚look and feel‘  controls framework iii. iii.Standardisation, Synergies Digitization & digital signal proccessing  FPGA, DSP boards Front End Electronics  ASICS  Interface definitions.

Integration, Interoperability, and Modularity data-transfer docking stations (station A) slow-control docking stations (station B)  e.g. GridCC (AGATA, CMS, …) time-synchronization docking (station C) station  (100ps/km) + local TDS System design for i & ii:

EXL & R³B DAQ / H.Simon Data-transfer docking stations (station A) Backends… data collection from detector systems (N  M) transfer and event building –Interface to processor farm –Interface to online analysis –Interface to slow control systems –… storage Under evaluation: Narval(Ganil/Agata) DABC(„FAIR“ DAQ)

EXL & R³B DAQ / H.Simon Slow-control docking stations (station B) H. Wörtche, H.S 1.checking setup (hardware, systems) 2.system initialisation 3.system parameter setting 4.monitoring (analog/digital) and safety C&C loops:  Settings  Raw Data, preanalyzed data, analized data C&C loops:  Settings  Raw Data, preanalyzed data, analized data procedure: calibration, optimization, monitoring, stabilisation procedure: calibration, optimization, monitoring, stabilisation eg PID : identification figure-of-merit  variation of parameters eg PID : identification figure-of-merit  variation of parameters  tight integration, hierarchic in data treatment First implementations: digital signal processing First implementations: digital signal processing with f-o-m determination with f-o-m determination (timing, KVI (timing, KVI

EXL & R³B DAQ / H.Simon System design for iii: Needed: Intermediate steps for R³B and EXL/R³B Demonstrators:  timeline now ! „Available from the shelf“: AMS-02 readout: low power VA64_hdr.9a (Ideas) e.g. AMS-02 readout: low power VA64_hdr.9a (Ideas) 0.7 mW/ch, correct channel count … 0.7 mW/ch, correct channel count … others: others:  Ians talk But: ¬ triggering and sparsification/readout speed ! Front End Electronics

EXL & R³B DAQ / H.Simon R³B precursor: extended experimental Setup at Cave C For 2007: proton tracking behind magnet with drift chambers (100×80 cm 2 ) resolution ~200  m p 16 mm For 2007: proton tracking around the target with Si-strip detectors

EXL & R³B DAQ / H.Simon Vertex reconstruction for ions and protons 41 × 72 mm 2, strip pitch about 100  m Dynamic range – 100 keV - 14 MeV Front of the SSD FEE AMS(-02) readout: e.g. NIM A 439 (2000) read out 2*5(320) + 6(384) VA_hdr.AMS64 resp. 9a chips IDEAS/Norway  SIDEREM NIM module

EXL & R³B DAQ / H.Simon VA_S1 320 ch VA_S2 320 ch VA_K 384 ch HCC S K J. Hofmann, W. Ott, N.Kurz (GSI) 12 Bit ADC ca. 80  s readout time (5MHz) DSP TMS320VC6414 (TI) FPGA Virtex-4 LX25 (Xilinx) SIlicon Strip DEtector REadout Module (SIDEREM)

EXL & R³B DAQ / H.Simon SIDEREM system J. Hofmann, W. Ott, N.Kurz (GSI)

EXL & R³B DAQ / H.Simon Proton Driftchamber FEE GTB Bus Piggy back PNPI St Peterburg PNPI Fermilab ASDQ block diagramme

EXL & R³B DAQ / H.Simon System integration via GTB piggy back L. Uvarov, V. Golovtsov, V. Yatsura, A. Kandzadeev (PNPI) Ch. Wimmer, Ch. Müntz, J. Stroth (UNI Frankfurt) J. Hofmann, W. Ott, N.Kurz (GSI) Cable connections over distances up to 100m. Screened 50 wires cable, 50 pin Mini-Ribbon connectors. Single master, up to 15 slaves for GTB32 configuration. Data rates up to 25 Mbytes/s. Differential transfer, address and data are multiplexed. 16 or 32 bit address and data width. Access to slaves via Token or direct Addressing GTB features:

EXL & R³B DAQ / H.Simon SAM/GTB readout setup J. Hofmann, W. Ott, N.Kurz (GSI)

EXL & R³B DAQ / H.Simon What‘s missing ? Self trigger capability Timestamps Frontend Trigger Integration  e.g. programmable  event storage and trigger post processing i.e. variable latency

EXL & R³B DAQ / H.Simon One way out (… more to come …)

Christian J. Schmidt et al. N-XYTER The First Dedicated Neutron Detector Readout ASIC INFM - Perugia Forschungszentrum Jülich Hahn Meitner Institut - Berlin Ruprecht Karls Universität - Heidelberg AGH University of Sci. and Tech. - Krakow

EXL & R³B DAQ / H.Simon N-XYTER: The DETNI Neutron Detector Readout ASIC Architecture: 128 channel data driven charge sensitive front end Front end for either polarity input signals: Charge sensitive pre-amp Fast analogue shaper as timing channel: init peak detector, timestamp Slow analogue shaper as energy channel with peak detection Readout:   de-randomizing analogue energy and digital time stamp (2ns resolution) FIFO   2D-spatial information through X-Y-coincidence   possible background suppression through spectroscopic window   resolution enhancement through center of gravity determination   de-randomizing robust and self sparsifiing readout strategy (token ring). AMS 0.35 microns

EXL & R³B DAQ / H.Simon Specifications for DETNI-ASIC as of PropertySpec agreed uponGd/Si-MSDGd/CsI-MSGCB-CASCADE GEM channel pitch50 µm Arbitraryarbitrary input capacitance C in 30 pF pF or rather 25pF ? 23 pF X 40 (33)pF Y pF T p timing channel30 ns T energy channelT 5% = 650 nsDef: Peak is above 5% no longer than T 5% Max ENC at C in and T p for timing channel optimize550 e2000 e660 e Dynamic range & gain two versions, low gain later (8 – 120)*10 3 e (2 –30)*10 5 e (8 – 69)*10 3 e(2 - 30)*10 5 e(2 – 400)*10 3 e no. of chan. per chip128 64, 128 timing resolution4 ns (opt. res.)8 ns4 ns10 ns Max. % dead-time10 % -> fifo depth: 1010 % average rate per chan.160 kHz 960 kHz160 kHz

EXL & R³B DAQ / H.Simon Token Ring Schema as proposed by Ulrich Trunk 2003   Periodic readout at 20MHz   Token asynchronously passes from channel to channel in search of data   Within one readout cycle token could pass through all channels   If token encounters occupied channels, data readout is initiated.   After readout the token passes to the next channel.   20 MHz/128 Ch ≈ 160 kHz 10 Bit ADC (ENOB 10.4)

EXL & R³B DAQ / H.Simon DETNI Collaboration S.S. Alimov a, A. Brogna b, S. Buzzetti b,c, W. Dabrowski d, T. Fiutowski d, B. Gebauer a, G. Kemmerling e, M. Klein b, C. Petrillo f, F. Sacchetti f, Ch.J. Schmidt g, K.H. Soltveit b, R. Szczygiel d,h, Ch. Schulz a, C. Thielmann e, U. Trunk b, P. Wiacek d, Th. Wilpert a a Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D Germany b Physikalisches Institut der Universität Heidelberg, Philosophenweg 12, D Heidelberg, Germany c INFM & Dipartimento di Elettronica et Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy d Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, Krakow, Poland e Central Institute for Electronics, Research Centre Jülich, Jülich, Germany f INFN & Dipartimento di Fisica, Universita di Perugia, Via A. Pascoli, Perugia I-06123, Italy g Gesellschaft für Schwerionenforschung, Planckstr. 1, Darmstadt, Germany h Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, Krakow, Poland

EXL & R³B DAQ / H.Simon Access via (Super)FRS project Brano Sitar et al., Chiara Nociforo, H.S., Martin Winkler + Detector Lab. GSI „Bratislava“ wire chambers (FP6 design study) 1.Deliverable includes single wire readout 2.Idea: Test N-XYTER 256 Ch. evaluation board 3.Interface via USB2 to PC  readout board Q3 /2007  chamber Q1or2/2008

EXL & R³B DAQ / H.Simon No summary FIN

DAQ/FEE and slow control NUSTAR COUNCIL NUSTAR DAQ Haik Simon (coord.) Michael Böhmer Michael Block Christophor Kozhuharov Nikolaus Kurz Ian Lazarus Johan Nyberg Lolly Pollacco Heinrich Wörtche … EXL Ian Lazarus R³B Haik Simon DESPEC Johan Nyberg … Thomas Nilsson NUSTAR Slow Control Heinrich Wörtche ‚GSI‘ DAQ Nikolaus Kurz, Hans Essel Experiments Related … Spiral2 Alpi

EXL & R³B DAQ / H.Simon Time-synchronization docking (station C) BuTiS: Bunchphase Timing FAIR Standard frequencies: 100 kHz, 10 MHz, 76 MHz(PHELIX), 155,52MHz(OC-3, network std.), 200 MHz Absolute time stamps (locally via GPS) Precision better 100 ps / km Optical fiber system, receiver cost high: (few 10k€)   one receiver/ cave   local time distribution system