Mark Saunders Inertial sensing with cold atoms.
Mark Saunders
Mark Saunders
Mark Saunders Inertial sensing with cold atoms.
Mark Saunders The -kicked rotor ( kr)
Mark Saunders Classical kr
Mark Saunders Classical kr
Mark Saunders Classical kr: Poincaré sections
Mark Saunders Quantum kr
Mark Saunders Quantum kr
Mark Saunders Quantum kr: Resonance and antiresonance
Mark Saunders Quantum kr: Resonance and antiresonance
Mark Saunders Quantum kr: Resonance and antiresonance
Mark Saunders Inertial sensing with cold atoms.
Mark Saunders The atom-optical -kicked accelerator
Mark Saunders The atom-optical -kicked accelerator
Mark Saunders The two-level atom
Mark Saunders The two-level atom
Mark Saunders The two-level atom
Mark Saunders The two-level atom
Mark Saunders The two-level atom
Mark Saunders The two-level atom
Mark Saunders The atom-optical -kicked accelerator
Mark Saunders The atom-optical -kicked accelerator
Mark Saunders The atom-optical -kicked accelerator
Mark Saunders Thermal gas: Initial conditions
Mark Saunders Thermal gas: Initial conditions
Mark Saunders Thermal gas: Initial conditions
Mark Saunders Simulations
Mark Saunders Inertial sensing with cold atoms.
Mark Saunders Experimental accessibility
Mark Saunders Applications
Mark Saunders Application 1: Velocity selection
Mark Saunders Application 1: Velocity selection
Mark Saunders Application 2: Gyroscopes
Mark Saunders Application 2: Gyroscopes
Mark Saunders Application 2: Gyroscopes
Mark Saunders Application 3: Accelerometry
Mark Saunders Applications
Mark Saunders Inertial sensing with cold atoms.
Mark Saunders Inertial sensitivity: Zero Temperature limit
Mark Saunders Inertial sensitivity: Zero Temperature limit
Mark Saunders Inertial sensitivity: Zero Temperature limit
Mark Saunders Inertial sensitivity: Zero Temperature limit
Mark Saunders Inertial sensitivity: Finite temperatures
Mark Saunders Resonance width
Mark Saunders Resonance width
Mark Saunders Resonance width
Mark Saunders
Mark Saunders Inertial sensing with cold atoms.
Mark Saunders Inertial sensing with cold atoms.
Mark Saunders Thesis
Mark Saunders Quantum kr: Resonance and antiresonance
Mark Saunders Fractional resonance: Zero temperature limit
Mark Saunders Thermal gas: w = 2.5
Mark Saunders Quasimomentum dependence
Mark Saunders Inertial dependence
Mark Saunders Inertial sensitivity: Zero Temperature limit
Mark Saunders Quantum observables
Mark Saunders Quantum observables
Mark Saunders Quantum observables
Mark Saunders Simulations
Mark Saunders Simulations
Mark Saunders Hoogerland: Velocity selection
Mark Saunders Prentiss: Analytic Result Question: How well is coherence preserved?
Mark Saunders dkp: Thermal resolution
Mark Saunders Momentum cumulants: Simulation results
Mark Saunders Momentum cumulants: Power law transition
Mark Saunders Momentum cumulants: Power law transition
Mark Saunders Resonance width
Mark Saunders w dependence
Mark Saunders Quasimomentum Resonance Width Interpretation:The resonance widths are independent of gravity (To be verified analytically). Question:WHY does the gravity affect the temperature dependence? Answer:This phenomenon must be due the number of resonances rather than their width. Observation: The second- and fourth-order momentum moments have a similar quasimomentum dependence
Mark Saunders Moment Evolution Analytic Asymptotes [8] Halkyard, Saunders, Challis and Gardiner, in preparation (March 2008) Ultra-cold Limit Thermal Limit
Mark Saunders Moment Evolution in Temperature Limits Ultra-cold Limit Thermal Limit [9] d’Arcy, Godun, Oberthaler, Summi, Burnett, and Gardiner, Phys. Rev. E (2001) [9]
Mark Saunders Momentum Moment Temperature Dependence
Mark Saunders Momentum Cumulant Temperature Dependence
Mark Saunders Inertial sensing with cold atoms.