Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS.

Slides:



Advertisements
Similar presentations
Superconductors. Gor’kov and Eliashberg found the time- dependent G-L equations using microscopic theory: These equations are solved numerically Model.
Advertisements

Title Vortex matter in presence of disorder Eli Zeldov Weizmann Institute of Science Rehovot, Israel.
Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J
Soft phonon mode and superconducting properties of 2H-NbS2
INSTITUT MAX VON LAUE - PAUL LANGEVIN Penetration Depth Anisotropy in MgB 2 Powder Measured by Small-Angle Neutron Scattering by Bob Cubitt & Charles Dewhurst.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
Kitaoka lab Itohara Keita
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Multiple phase transformations in weakly pinned vortex matter S. Ramakrishnan and A. K. Grover S. Ramakrishnan and A. K. Grover Department of Condensed.
RAMAN SPECTROSCOPY Scattering mechanisms
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Size effect in the vortex-matter phase transition in Bi 2 Sr 2 CaCuO 8+  ? B. Kalisky, A. Shaulov and Y. Yeshurun Bar-Ilan University Israel T. Tamegai.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
1 Ferromagnetic Josephson Junction and Spin Wave Resonance Nagoya University on September 5,2009 Sadamichi Maekawa (IMR, Tohoku University) Co-workers:
Small-Angle Neutron Scattering & The Superconducting Vortex Lattice
RF Superconductivity and the Superheating Field H sh James P. Sethna, Gianluigi Catelani, and Mark Transtrum Superconducting RF cavity Lower losses Limited.
Electro-Optic Search for Threshold Divergence of the CDW Diffusion Constant in Blue Bronze (K 0.3 MoO 3 ) L. Ladino, J.W. Brill, University of Kentucky.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Vortices in Classical Systems. Vortices in Superconductors  = B  da = n hc e*  e i  wavefunction Superconducting flux quantum e*=2e   = 20.7.
Vortex Dynamics in Type II Superconductors Yuri V. Artemov Yuri V. Artemov Ph.D. Student in Physics Brian B. Schwartz Mentor: Brian B. Schwartz Professor.
Pierre Le Doussal (LPTENS) Kay J. Wiese (LPTENS) Florian Kühnel (Universität Bielefeld ) Long-range correlated random field and random anisotropy O(N)
Thin Films for Superconducting Cavities HZB. Outline Introduction to Superconducting Cavities The Quadrupole Resonator Commissioning Outlook 2.
Nano-scale friction kinetic friction of solids of Magnetic flux quanta and Charge-density - a new route to microscopic understanding of friction - Dep.
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
J. R. Kirtley et al., Phys. Rev. Lett. 76 (1996),
Statics and dynamics of elastic manifolds in media with long-range correlated disorder Andrei A. Fedorenko, Pierre Le Doussal and Kay J. Wiese CNRS-Laboratoire.
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
Don McKenzie Paul University of Warwick Don McKenzie Paul University of Warwick The Vortex Lattice in Superconductors as seen by neutron diffraction An.
Type I and Type II superconductivity
Structure in the mixed phase
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Rotating Superfluid 3 He in Aerogel Takao Mizusaki Department of Physics, Graduate School of Science, Kyoto University Collaborators: Kyoto University,
L.Ya. Vinnikov   L.A, Emelchenko ISSP RAS, Chernogolovka, RUSSIA
LATTICE BOLTZMANN SIMULATIONS OF COMPLEX FLUIDS Julia Yeomans Rudolph Peierls Centre for Theoretical Physics University of Oxford.
Magneto-optical imaging of Superconductors Satyajit S.Banerjee Dept of Physics, Indian Institute of Technology, Kanpur, India.
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,
A Critical Look at Criticality AIO Colloquium, June 18, 2003 Van der Waals-Zeeman Institute Dennis de Lang The influence of macroscopic inhomogeneities.
Galvanomagnetic effects in electron- doped superconducting compounds D. S. Petukhov 1, T. B. Charikova 1, G. I. Harus 1, N. G. Shelushinina 1, V. N. Neverov.
Fingering, Fronts, and Patterns in Superconductors
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Vortex avalanches in superconductors: Size distribution and Mechanism Daniel Shantsev Tom Johansen andYuri Galperin AMCS group Department of Physics, University.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Critical state controlled by microscopic flux jumps in superconductors
Recent progress in glassy physics, Paris H. Rieger, G. Schehr Glassy properrties of lines, manifolds and elastic media in random environments.
Vortex Lattice Anisotropy in Magnesium Diboride Morten Ring Eskildsen Department of Physics University of Notre Dame.
Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau
Superconductivity and Superfluidity Flux line motion In principlea Type II superconductor should be “better” than a Type I for most applications - it remains.
Arthur Straube PATTERNS IN CHAOTICALLY MIXING FLUID FLOWS Department of Physics, University of Potsdam, Germany COLLABORATION: A. Pikovsky, M. Abel URL:
Global and local flux jumps in MgB2 films: Magneto-optical imaging and theory Daniel Shantsev, Yuri Galperin, Alexaner Bobyl, Tom Johansen Physics Department,
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Anomalous Local Transport in MicrofabricatedSr 2 RuO 4 -Ru Eutectic Junction Univ. AISTHiroshi Kambara Satoshi Kashiwaya Tokyo.
J.Vaitkus, L.Makarenko et all. RD50, CERN, 2012 The free carrier transport properties in proton and neutron irradiated Si(Ge) (and comparison with Si)
Superconductivity and Superfluidity The Pippard coherence length In 1953 Sir Brian Pippard considered 1. N/S boundaries have positive surface energy 2.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
AC Susceptibility Adrian Crisan National Institute of Materials Physics, Bucharest, Romania.
Transport Measurements in Superconductivity and DC Magnetization
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay,
Scientific Achievement
Fig. 2: Gap symmetry: Comparison with Ce doping
High Temperature Superconductivity
Ginzburg-Landau theory
Presentation transcript:

Vortex Pinning and Sliding in Superconductors Charles Simon, laboratoire CRISMAT, CNRS

Laboratoire CRISMAT A. Pautrat C. Goupil Ecole Normale Supérieure Paris P. Mathieu LEMA Tours A. Ruyter L. Ammor Laboratoire Léon Brillouin A. Brûlet Institut Laue Langevin C. Dewhurst

I Introduction to vortex pinning and dynamics II A neutron diffraction study in low Tc materials III The peak effect in NbSe 2 IV The surface pinning in Bi-2212 V Conclusions

Vortex dynamics V B FLFL I V ff I (A) V (mV) 0.1 T 0.2 T 0.3 T I c (B) Nb-Ta 4.2 K V= R ff (B,T) (I-Ic(B,T)) E=B. V ff

 Typical disordered elastic system with pinning and sliding with the possibility to vary the intensity of the pinning by changing the magnetic field.  But from the beginning: problems (shape of the IV, …)  Here : Low temperature physics  Neutron scattering, very difficult but quite simple to interpret (10 years)

Neutron scattering B T B c2 B c1 Meissner Normal phase Niobium Nb-Ta Bi-2212

B(G) Cubitt, R. et al. Nature 365, (1993). T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994). and Phys. Rev. B 52, 1242 (1995).

T. Klein et al., Nature 413, (2001) 404

Neutrons with current Nb-Ta singlecrystal P. Thorel and al., J. Phys. (Paris) 34, 447 (1973). A. Pautrat, Phys. Rev. Lett. 90, (2003).

Neutrons with current Nb-Ta singlecrystal

How flows the current?  Ic/2 I bulk =0 Ic/2 I bulk =(I-Ic) B neutrons curl B =   J tan  b y / B =   J x e / B A. Pautrat, et al. Phys. Rev. Lett. 90, (2003)

surface pinning (Pb-In) V(mV) I (A) Ic Ic (Amp) Surface treatments

Why surface pinning? Normal rough surface i c (A/m) = . sin  cr B 1000 Å MS length P. Mathieu et Y. Simon, Europhys Lett 5, 1988 ~ A/cm icic v  (  o  /B) 1/2  a o Boundary conditions n  cr

 / H C2  / B C2  = 1 Numerical solution of Ginzburg equations by Guilpin and Simon Nb film Quantitative prediction Quantitative analysis of the critical current due to vortex pinning by surface corrugation A.Pautrat, J. Scola, C. Goupil, Ch. Simon, C. Villard, B. Domengès, Y. Simon, B.Phys. Rev. B 69, (2004)

What happens at high current? V=R ff (I-Ic) V(mV) I(A)  (deg) I (Amp) V (  V) Smooth surface Rough surface  (deg) I (Amp) V (  V)  (deg) 0 A 20 A

Inhomogeneous critical current  (deg) V (  V) I c1 < I < I c2 I c1 I c2

The peak effect in NbSe 2 Metastable states of a flux-line lattice studied by transport and small-angle neutron A. Pautrat, J. Scola, Ch. Simon, P. Mathieu, A. Brûlet, C. Goupil, M. J. Higgins, Phys. Rev. B 71, (2005)

NbSe 2

Iron doped NbSe 2

T. Klein et al., Nature 413, (2001) 404

Bi-2212 Transport in the peak effect

Bi-2212 Persistence of an ordered flux line lattice above the second peak in Bi2Sr2CaCu2O8+δ A. Pautrat, Ch. Simon, C. Goupil, P. Mathieu, A. Brûlet, C. D. Dewhurst, and A. I. Rykov Phys. Rev. B 75, (2007)

Bi-2212 with columnar defects 5K 0.4T B  =1T Microbridge 50  m 20  m Surface vortex depinning in an irradiated single crystal microbridge of Bi2Sr2CaCu2O8+δ : Crossover from individual to collective bulk pinning A. Ruyter, D. Plessis, Ch. Simon, A. Wahl, and L. Ammor Phys. Rev. B 77, (2008)

Do columnar defects product bulk pinning? No, there is no bulk currents Do Columnar Defects Produce Bulk Pinning ? M. V. Indenbom, C. J. van der Beek, M. Konczykowski, and F. Holtzberg Phys. Rev. Lett. 84, 1792 (2000)

Reversible magnetization A. Wahl et al., Physica C (1995) R. J. Drost et al, PRB 58 R615 (1998)

 Very powerful technique  Surface currents  Peak effect = metastable states  What is the limit of this stability?  Noise measurements, ac response, Hall effects… Conclusions