Recent Numerical Advances for Beam-Driven HEDP Experiments S.A. Veitzer, P.H. Stoltz, J.R. Cary Tech-X Corporation J.J. Barnard Lawrence Livermore National Laboratory Fusion Energy Science Advisory Committee Subpanel Workshop on High Energy Density Laboratory Plasmas August , 2008 Washington, D.C Funded by DOE SBIR Grant #DE-FG02-03ER
Tech-X Corporation 2 Ion Beams Can Drive Target Heating An attractive approach for studying HED, WDM, and ICF, with a potential for producing IFE Different attributes than laser-driven heating, yet some physics still relevant to ICF, etc. –Uniform heating of macroscopic target volumes –High repetition rate –Cost-effective Theory and simulation are important components for driving experiments Collaborative research with the HIF Virtual National Laboratory Recent successes in modeling energy deposition, especially with respect to low energy beams
Tech-X Corporation 3 Threefold goals for enhanced numerical modeling Develop and implement accurate stopping power models at and below the Bragg peak Increase access to and ease-of-use of numerical models of beam-material interactions for the research community Validate stopping power models with established codes and experiments
Tech-X Corporation 4 Stopping power has three components –Bound electronic (Brandt-Kitigawa) –Free electron (Peter & Meyer-ter-Vehn) –Nuclear (Semi-empirical, SRIM) Compare with Classical Bethe-Bloch stopping Low-energy beams require nuclear stopping power models
Tech-X Corporation 5 Models are implemented in C in a standalone numerical library called TxPhysics –open source and free to download for non-commercial use Automated build system works on Linux, Mac, and Windows Many language bindings for inclusion in simulation packages, e.g. Python, Java Routines are currently interfaced to –WARP (LBNL) –HYDRA (LLNL) –VORPAL, OOPIC Pro (Tech-X) –Others Additional physics, e.g. secondary electron emission, impact ionization, field emission, sputtering, and radiation models Python-driven web 2.0 interface Modern software design standards provides increased usability
Tech-X Corporation 6 Web and Python access to TxPhysics physics models
Tech-X Corporation 7 Web interface allows quick access to stopping powers without coding
Tech-X Corporation 8 Researchers can plot or download tables, save and publish
Tech-X Corporation 9 Dual pulse simulations show dE/dx differences In collaboration with researchers at LLNL, we have interfaced TxPhysics stopping power models with Hydra.
Tech-X Corporation 10 Dual pulse simulations show dE/dx differences
Tech-X Corporation 11 Dual pulse simulations show dE/dx differences
Tech-X Corporation 12 Future Direction: Grazing Incidence Focusing of beams Grazing collisions with solid density nozzles (hollow cones) can focus space charge dominated beams –Secondary electrons provide enhanced beam neutralization –Multiple reflections from cone surface may reduce the spot size in the focal plane Experiments are needed to –Measure secondary electron yields for grazing incidence collisions for various materials (conductors and insulators) –Demonstrate focusing by grazing incidence deflections Computational models are needed to –Drive target design and fabrication –Predicting accelerator performance