Factor Analysis Factor analysis is a method of dimension reduction.

Slides:



Advertisements
Similar presentations
Aaker, Kumar, Day Seventh Edition Instructor’s Presentation Slides
Advertisements

Mutidimensional Data Analysis Growth of big databases requires important data processing.  Need for having methods allowing to extract this information.
Factor Analysis and Principal Components Removing Redundancies and Finding Hidden Variables.
Factor Analysis Continued
Chapter Nineteen Factor Analysis.
© LOUIS COHEN, LAWRENCE MANION & KEITH MORRISON
Lecture 7: Principal component analysis (PCA)
Psychology 202b Advanced Psychological Statistics, II April 7, 2011.
Principal Components An Introduction Exploratory factoring Meaning & application of “principal components” Basic steps in a PC analysis PC extraction process.
Factor Analysis Research Methods and Statistics. Learning Outcomes At the end of this lecture and with additional reading you will be able to Describe.
Factor Analysis There are two main types of factor analysis:
A quick introduction to the analysis of questionnaire data John Richardson.
Principal component analysis
Exploring Microarray data Javier Cabrera. Outline 1.Exploratory Analysis Steps. 2.Microarray Data as Multivariate Data. 3.Dimension Reduction 4.Correlation.
Goals of Factor Analysis (1) (1)to reduce the number of variables and (2) to detect structure in the relationships between variables, that is to classify.
Education 795 Class Notes Factor Analysis II Note set 7.
Slide 1 Detecting Outliers Outliers are cases that have an atypical score either for a single variable (univariate outliers) or for a combination of variables.
Multivariate Methods EPSY 5245 Michael C. Rodriguez.
Factor Analysis Psy 524 Ainsworth.
Social Science Research Design and Statistics, 2/e Alfred P. Rovai, Jason D. Baker, and Michael K. Ponton Factor Analysis PowerPoint Prepared by Alfred.
Principal Components Principal components is a method of dimension reduction. Suppose that you have a dozen variables that are correlated. You might use.
Chapter 2 Dimensionality Reduction. Linear Methods
Factor Analysis Anthony Sealey University of Toronto This material is distributed under an Attribution-NonCommercial-ShareAlike 3.0 Unported Creative Commons.
Factor Analysis in Individual Differences Research: The Basics Psych 437.
Advanced Correlational Analyses D/RS 1013 Factor Analysis.
Applied Quantitative Analysis and Practices
Factor Analysis Psy 524 Ainsworth. Assumptions Assumes reliable correlations Highly affected by missing data, outlying cases and truncated data Data screening.
Thursday AM  Presentation of yesterday’s results  Factor analysis  A conceptual introduction to: Structural equation models Structural equation models.
© 2007 Prentice Hall19-1 Chapter Nineteen Factor Analysis © 2007 Prentice Hall.
Descriptive Statistics vs. Factor Analysis Descriptive statistics will inform on the prevalence of a phenomenon, among a given population, captured by.
Marketing Research Aaker, Kumar, Day and Leone Tenth Edition Instructor’s Presentation Slides 1.
Lecture 12 Factor Analysis.
Smoking Data The investigation was based on examining the effectiveness of smoking cessation programs among heavy smokers who are also recovering alcoholics.
Multivariate Analysis and Data Reduction. Multivariate Analysis Multivariate analysis tries to find patterns and relationships among multiple dependent.
Copyright © 2010 Pearson Education, Inc Chapter Nineteen Factor Analysis.
Applied Quantitative Analysis and Practices
Exploratory Factor Analysis. Principal components analysis seeks linear combinations that best capture the variation in the original variables. Factor.
Education 795 Class Notes Factor Analysis Note set 6.
Department of Cognitive Science Michael Kalsher Adv. Experimental Methods & Statistics PSYC 4310 / COGS 6310 Factor Analysis 1 PSYC 4310 Advanced Experimental.
Multivariate Data Analysis Chapter 3 – Factor Analysis.
Factor Analysis I Principle Components Analysis. “Data Reduction” Purpose of factor analysis is to determine a minimum number of “factors” or components.
Advanced Statistics Factor Analysis, I. Introduction Factor analysis is a statistical technique about the relation between: (a)observed variables (X i.
Applied Quantitative Analysis and Practices LECTURE#19 By Dr. Osman Sadiq Paracha.
Feature Extraction 主講人:虞台文. Content Principal Component Analysis (PCA) PCA Calculation — for Fewer-Sample Case Factor Analysis Fisher’s Linear Discriminant.
FACTOR ANALYSIS 1. What is Factor Analysis (FA)? Method of data reduction o take many variables and explain them with a few “factors” or “components”
SW388R7 Data Analysis & Computers II Slide 1 Principal component analysis Strategy for solving problems Sample problem Steps in principal component analysis.
Principal Component Analysis
FACTOR ANALYSIS.  The basic objective of Factor Analysis is data reduction or structure detection.  The purpose of data reduction is to remove redundant.
Chapter 14 EXPLORATORY FACTOR ANALYSIS. Exploratory Factor Analysis  Statistical technique for dealing with multiple variables  Many variables are reduced.
FACTOR ANALYSIS & SPSS. First, let’s check the reliability of the scale Go to Analyze, Scale and Reliability analysis.
Basic statistical concepts Variance Covariance Correlation and covariance Standardisation.
1 FACTOR ANALYSIS Kazimieras Pukėnas. 2 Factor analysis is used to uncover the latent (not observed directly) structure (dimensions) of a set of variables.
Lecture 2 Survey Data Analysis Principal Component Analysis Factor Analysis Exemplified by SPSS Taylan Mavruk.
Exploratory Factor Analysis
EXPLORATORY FACTOR ANALYSIS (EFA)
Analysis of Survey Results
Factor analysis Advanced Quantitative Research Methods
Measuring latent variables
An introduction to exploratory factor analysis in IBM SPSS Statistics
© LOUIS COHEN, LAWRENCE MANION AND KEITH MORRISON
Measuring latent variables
Descriptive Statistics vs. Factor Analysis
Measuring latent variables
EPSY 5245 EPSY 5245 Michael C. Rodriguez
Principal Component Analysis
Chapter_19 Factor Analysis
Measuring latent variables
Presentation transcript:

Factor Analysis Factor analysis is a method of dimension reduction. It does this by seeking underlying unobservable (latent) variables that are reflected in the observed variables (manifest variables). Mike Cox, Newcastle University, me fecit 18/11/2014 Monday, 17 April 2017 4:24 AM

Factor Analysis There are many different methods that can be used to conduct a factor analysis There are many different types of rotations that can be done after the initial extraction of factors. You also need to determine the number of factors that you want to extract.

Factor Analysis Given the number of factor analytic techniques and options, it is not surprising that different analysts could reach very different results analysing the same data set.

Factor Analysis However, all analysts are looking for a simple structure. Simple structure is a pattern of results such that each variable loads highly onto one and only one factor.

Factor Analysis Factor analysis is a technique that requires a large sample size. Factor analysis is based on the correlation matrix of the variables involved, and correlations usually need a large sample size before they stabilize.

Factor Analysis As a rule of thumb, a bare minimum of 10 observations per variable is necessary to avoid computational difficulties. Comrey and Lee (1992) A First Course In Factor Analysis

Factor Analysis In this example I have included many options, while you may not wish to use all of these options, I have included them here to aid in the explanation of the analysis.

Factor Analysis In this example we examine students assessment of academic courses. We restrict attention to 12 variables. Scored on a five point Likert scale, seven is better.

Factor Analysis In this example we examine students assessment of academic courses. We restrict attention to 12 variables. Scored on a five point Likert scale.

Factor Analysis Analyze > Dimension Reduction > Factor

Factor Analysis Select variables 13-24 that is “instructor well prepared” to “compared to other courses this course was”. By using the arrow button. Use the buttons at the side of the screen to set additional options.

Factor Analysis Use the buttons at the side of the previous screen to set the Descriptives. Employ the Continue button to return to the main Factor Analysis screen. Note the request for a determinant.

Factor Analysis Use the buttons at the side of the main screen to set the Extraction. Employ the Continue button to return to the main Factor Analysis screen. Note the request for Principal axis factoring, 3 factors and a scree plot.

Factor Analysis Use the buttons at the side of the main screen to set the Rotation (Varimax). Employ the Continue button to return to the main Factor Analysis screen.

Factor Analysis Varimax rotation tries to maximize the variance of each of the factors, so the total amount of variance accounted for is redistributed over the three extracted factors.

Factor Analysis Select the OK button to proceed with the analysis, or Paste to preserve the syntax. Syntax for varimax and 3 factors, alternatives promax and 2 factor /variables item13 item14 item15 item16 item17 item18 item19 item20 item21 item22 item23 item24 /print initial det kmo repr extraction rotation fscore univaratiate /format blank(.30) /plot eigen rotation /criteria factors(3) /extraction paf /rotation varimax /method = correlation.

Factor Analysis The descriptive statistics table is output because we used the univariate option. Mean - These are the means of the variables used in the factor analysis. Are they meaningful for a Likert scale!

Factor Analysis The descriptive statistics table is output because we used the univariate option. Std. Deviation - These are the standard deviations of the variables used in the factor analysis. Are they meaningful for a Likert scale!

Factor Analysis The descriptive statistics table is output because we used the univariate option. Analysis N - This is the number of cases used in the factor analysis. Note N is 1365.

Factor Analysis The correlation matrix is included in the output because we used the determinant option. All we want to see in this table is that the determinant is not 0. If the determinant is 0, then there will be computational problems with the factor analysis, and SPSS may issue a warning message or be unable to complete the factor analysis.

Factor Analysis Kaiser-Meyer-Olkin Measure of Sampling Adequacy This measure varies between 0 and 1, and values closer to 1 are better. A value of 0.6 is a suggested minimum.

Factor Analysis Bartlett's Test of Sphericity (see the ANOVA slides) - This tests the null hypothesis that the correlation matrix is an identity matrix. An identity matrix is matrix in which all of the diagonal elements are 1 and all off diagonal elements are 0 (indicates a lack of correlation). You want to reject this null hypothesis.

Factor Analysis Taken together, these tests provide a minimum standard, which should be passed before a factor analysis (or a principal components analysis) should be conducted.

Factor Analysis Communalities - This is the proportion of each variable's variance that can be explained by the factors (e.g., the underlying latent continua).

Factor Analysis Initial - With principal factor axis factoring, the initial values on the diagonal of the correlation matrix are determined by the squared multiple correlation of the variable with the other variables. For example, if you regressed items 14 through 24 on item 13, the squared multiple correlation coefficient would be 0.564.

Factor Analysis Extraction - The values in this column indicate the proportion of each variable's variance that can be explained by the retained factors. Variables with high values are well represented in the common factor space, while variables with low values are not well represented. (In this example, we don't have any particularly low values.)

Factor Analysis Factor - The initial number of factors is the same as the number of variables used in the factor analysis. However, not all 12 factors will be retained. In this example, only the first three factors will be retained (as we requested).

Factor Analysis Initial Eigenvalues - Eigenvalues are the variances of the factors. Because we conducted our factor analysis on the correlation matrix, the variables are standardized, which means that the each variable has a variance of 1, and the total variance is equal to the number of variables used in the analysis, in this case, 12.

Factor Analysis Initial Eigenvalues - Total - This column contains the eigenvalues. The first factor will always account for the most variance (and hence have the highest eigenvalue), and the next factor will account for as much of the left over variance as it can, and so on. Hence, each successive factor will account for less and less variance.

Factor Analysis Initial Eigenvalues - % of Variance - This column contains the percent of total variance accounted for by each factor (6.249/12 = .52 or 52%).

Factor Analysis Initial Eigenvalues - Cumulative % - This column contains the cumulative percentage of variance accounted for by the current and all preceding factors. For example, the third row shows a value of 68.313. This means that the first three factors together account for 68.313% of the total variance.

Factor Analysis Extraction Sums of Squared Loadings - The number of rows in this panel of the table correspond to the number of factors retained. The values are based on the common variance (of the retained factors). The values in this panel of the table will always be lower than the values in the left panel of the table, because they are based on the common variance, which is always smaller than the total variance.

Factor Analysis Rotation Sums of Squared Loadings - The values in this panel of the table represent the distribution of the variance after the varimax rotation. Varimax rotation tries to maximize the variance of each of the factors, so the total amount of variance accounted for is redistributed over the three extracted factors. Note the more even split.

Factor Analysis The scree plot graphs the eigenvalue (variance) against the factor number. You can see these values in the first two columns of the variance explained table.

Factor Analysis From the third factor on, you can see that the line is almost flat, meaning the each successive factor is accounting for smaller and smaller amounts of the total variance. You need to locate this, so called, elbow! In other words, when the drop ceases and the curve makes an elbow toward a less steep decline.

Factor Analysis Factor Matrix - This table contains the unrotated factor loadings, which are the correlations between the variable and the factor. Because these are correlations, possible values range from -1 to +1. It is usual to not report any correlations that are less than |.3|. As shown.

Factor Analysis Factor - The columns under this heading are the unrotated factors that have been extracted. As you can see by the footnote provided by SPSS, three factors were extracted (the three factors that we requested).

Factor Analysis The plot shows the items (variables) in the rotated factor space. While this picture may not be particularly helpful, when you get this graph in the SPSS output, you can interactively rotate it.

Factor Analysis Rotation may help you to see how the items (variables) are organized in the common factor space.

Factor Analysis Another run of the factor analysis program is conducted with a promax rotation. It is included to show how different the rotated solutions can be, and to better illustrate what is meant by simple structure. As you will see with an oblique rotation, such as a promax rotation, the factors are permitted to be correlated with one another. With an orthogonal rotation, such as the varimax shown above, the factors are not permitted to be correlated (they are orthogonal to one another). Oblique rotations, such as promax, produce both factor pattern and factor structure matrices. For orthogonal rotations, such as varimax and equimax, the factor structure and the factor pattern matrices are the same.

Factor Analysis Use the buttons at the bottom of the screen to set the alternate Rotation, employ the Continue button to return to the main Factor Analysis screen.

Factor Analysis The resulting plot with a “simple” structure is shown.

Factor Analysis For a recent review see Factor Analysis at 100. Historical Developments and Future Directions. By Robert Cudeck, and Robert C. MacCallum (Eds.). Lawrence Earlbaum Associates, Mahwah, NJ, 2007, xiii+381 pp., ISBN:978-0-8058-5347-6 (hardcover), and, ISBN 978-0-8058-6212-6 (paperback).

Factor Analysis Summary Factor Analysis like principal components is used to summarise the data covariance structure in a smaller number of dimensions. The emphasis is the identification of underlying “factors” that might explain the dimensions associated with large data variability. A Beginner’s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis An Gie Yong and Sean Pearce Tutorials in Quantitative Methods for Psychology 2013 9(2) 79-94

Factor Analysis Principal Components Analysis and Factor Analysis share the search for a common structure characterized by few common components, usually known as “scores” that determine the observed variables contained in matrix X. However, the two methods differ on the characterization of the scores as well as on the technique adopted for selecting their true number. In Principal Components Analysis the scores are the orthogonalised principal components obtained through rotation, while in Factor Analysis the scores are latent variables determined by unobserved factors and loadings which involve idiosyncratic error terms. The dimension reduction of matrix X implemented by each method produces a set of fewer homogenous variables – the true scores – which contain most of the model’s information.

Factor Analysis Summary Principal Components is used to help understand the covariance structure in the original variables and/or to create a smaller number of variables using this structure. For Principal Components, see next weeks lecture.

SPSS Tips Now you should go and try for yourself. Each week our cluster (5.05) is booked for 2 hours after this session. This will enable you to come and go as you please. Obviously other timetabled sessions for this module take precedence.