IFIC, 6 February 2007 Julien Lesgourgues (LAPTH, Annecy)

Slides:



Advertisements
Similar presentations
Backreaction as an explanation for Dark Energy ? with some remarks on cosmological perturbation theory James M. Bardeen University of Washington The Very.
Advertisements

Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Is the right behind inlfation ? Gabriela Barenboim SILAFAE 09.
Inflation Jo van den Brand, Chris Van Den Broeck, Tjonnie Li Nikhef: April 23, 2010.
Non-Gaussianity of superhorizon curvature perturbations beyond δN-formalism Resceu, University of Tokyo Yuichi Takamizu Collaborator: Shinji Mukohyama.
The Cosmological Slingshot Scenario A Stringy Proposal for Early Time Cosmology: Germani, NEG, Kehagias, hep-th/ Germani, NEG, Kehagias, arXiv:
The physics of inflation and dark energy 2.6 Acceleration in scalar field models Hubble “drag” Potential  V()V() Canonical scalar fields: If thekineticenergy.
Observed Features of the Universe Universe is homogeneous and isotropic on lengths > 100 Mpc Universe expanding uniformly ordinary matter is more abundant.
Cosmology and extragalactic astronomy Mat Page Mullard Space Science Lab, UCL 10. Inflation.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
Waves and Bubbles The Detailed Structure of Preheating Gary Felder.
Cosmological Structure Formation A Short Course
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
Probing the Structure of Stringy Landscape by Large Scale CMB Experiments Amjad Ashoorioon in collaboration with Ulf H. Danielsson 24 th Nordic Conference.
History of the Universe - according to the standard big bang
CMB as a physics laboratory
New Inflation Amy Bender 05/03/2006. Inflation Basics Perturbations from quantum fluctuations of scalar field Fluctuations are: –Gaussian –Scale Invariant.
Particle Physics and Cosmology Inflation.
InflationInflation Andrei Linde Lecture 1. Plan of the lectures: Inflation: a general outlook Basic inflationary models (new inflation, chaotic inflation,
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
After inflation: preheating and non-gaussianities Kari Enqvist University of Helsinki Bielefeld
Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4.
Non-minimal inflation and SUSY GUTs Nobuchika Okada University of Alabama International Workshop on Grand Unification Yukawa Institute of Theoretical Physics.
Higgs inflation in minimal supersymmetric SU(5) GUT Nobuchika Okada University of Alabama, Tuscaloosa, AL In collaboration with Masato Arai & Shinsuke.
THE GRACEFUL EXIT FROM INFLATION AND DARK ENERGY By Tomislav Prokopec Publications: Tomas Janssen and T. Prokopec, arXiv: ; Tomas Janssen, Shun-Pei.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Cosmic Inflation Tomislav Prokopec (ITP, UU) Utrecht Summer School, 28 Aug 2009 ˚ 1˚ WMAP 3y 2006.
Yoshiharu Tanaka (YITP) Gradient expansion approach to nonlinear superhorizon perturbations Finnish-Japanese Workshop on Particle Helsinki,
Black hole production in preheating Teruaki Suyama (Kyoto University) Takahiro Tanaka (Kyoto University) Bruce Bassett (ICG, University of Portsmouth)
Emergent Universe Scenario
Cosmology from CMB Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us about the.
THE LARGE SCALE CMB CUT-OFF AND THE TENSOR-TO-SCALAR RATIO Gavin Nicholson Imperial College London with Carlo Contaldi Imperial College London (astro-ph/ )
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Inflation: a Status Report Jérôme Martin Institut d’Astrophysique de Paris (IAP) Annecy, LAPTH, February 3, 2011.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Extranatural Inflation Nuno M. C. Santos CFTP - IST Centro de Física Teórica de Partículas Instituto Superior Técnico - Universidade Técnica de Lisboa.
Open Inflation in the Landscape Misao Sasaki (YITP, Kyoto University) in collaboration with Daisuke Yamauchi (now at ICRR, U Tokyo) and Andrei Linde, Atsushi.
The Theory/Observation connection lecture 2 perturbations Will Percival The University of Portsmouth.
1. Cosmic string scenario was the first mechanism to provide the origin of density fluctuations that seeded cosmic large-scale structures from fundamental.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
Cosmological Perturbations in the brane worlds Kazuya Koyama Tokyo University JSPS PD fellow.
Constraining SUSY GUTs and Inflation with Cosmology Collaboration : M. Sakellariadou, R. Jeannerot. References : Jeannerot, J. R., Sakellariadou (2003)
the National Radio Astronomy Observatory – Socorro, NM
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
  N formalism for curvature perturbations from inflation Yukawa Institute (YITP) Kyoto University Kyoto University Misao Sasaki DESY 27/09/2006.
Testing the slow roll inflation paradigm with the Big Bang Observer
Inflationary Theory of Primordial Cosmological Perturbation Project for General Relativity (Instructor: Prof.Whiting) Sohyun Park.
Inflation Sean Carroll, Caltech SSI The state of the universe appears finely-tuned 2.Inflation can make things smooth and flat 3.Primordial perturbations.
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
Unesco July 2005Francis Bernardeau SPhT Saclay1 Models of inflation with primordial non-Gaussianities Francis Bernardeau SPhT Saclay Collaboration with.
Inflation scenario via the Standard Model Higgs boson and LHC A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow A.Yu.Kamenshchik Landau.
Can observations look back to the beginning of inflation ?
Dark Energy in the Early Universe Joel Weller arXiv:gr-qc/
Quantum Noises and the Large Scale Structure Wo-Lung Lee Physics Department, National Taiwan Normal University Physics Department, National Taiwan Normal.
Salient Features of the Universe Homogeneity and isotropy for 6000 Mpc > x > 100 Mpc Universe expanding uniformly ordinary matter is more abundant than.
1 1 The Darkness of the Universe: The Darkness of the Universe: Acceleration and Deceleration Eric Linder Lawrence Berkeley National Laboratory.
WMAP and smooth hybrid new inflation: Density fluctuations of an effectively single field inflation in a multi-field configuration MASAHIDE YAMAGUCHI (AOYAMA.
Introductory Review of Cosmic Inflation
Inflation and Fundamental Physics
The Origin and the Fate of the Universe
Cosmic Inflation and Quantum Mechanics I: Concepts
Inflation with a Gauss-Bonnet coupling
Quantum Spacetime and Cosmic Inflation
Inflation and the cosmological density perturbation
General, single field Inflation
Measurements of Cosmological Parameters
Presentation transcript:

IFIC, 6 February 2007 Julien Lesgourgues (LAPTH, Annecy)

1) « historical arguments » - flatness problem - horizon problem - monopoles & topological defects 2) basic model - slow rolling scalar field - primordial fluctuations 3) agreement between CMB maps and inflation - coherence - scale invariance - gaussianity - adiabaticity 4) current constraints on inflation, prospects…

1) « historical arguments » - flatness problem - horizon problem - monopoles & topological defects 2) basic model - slow rolling scalar field - primordial fluctuations 3) agreement between CMB maps and inflation - coherence - scale invariance - gaussianity - adiabaticity 4) current constraints on inflation, prospects… : A.Starobinsky A. Guth

1) « historical arguments » : flatness problem Definitions : -scale factor : a(t) ds 2 = dt 2 - a(t) 2 dx 2 c=1 -e-fold number : N = ln a e.g. “a stage lasts for  N=10 e-folds”  a(t) increases by factor e 10 =22000

Friedmann equation : or : matter (nr, r) spatial curvature a -2 a -3, a -4 1) « historical arguments » : flatness problem decelerated expansion H

ln a ln  matter radiation dark energy ? curvature today 1) « historical arguments » : flatness problem

? curvature Mp4Mp ) « historical arguments » : flatness problem ln a ln  matter radiation dark energy today

? TeV ) « historical arguments » : flatness problem curvature ln a ln  matter radiation dark energy today

Inflation = stage of accelerated expansion Friedmann Energy cons. ä(t) > 0   + 3 p < 0    a n, -2 < n < 0 1) « historical arguments » : flatness problem

ln a ln  curvature matter radiation dark energy today inflation 1) « historical arguments » : flatness problem

What is the minimal duration of inflation ? 1) « historical arguments » : flatness problem

ln a ln  radiation a -4 today inflation  ~cst curvature a -2  N inflation =  N post-inflation

Minimal duration of inflation : 1) « historical arguments » : flatness problem  N inflation   N post-inflation transition infl. → rad.minimal  N inflation (10 16 GeV) 4 … (1 TeV) 4 ~67 … ~37

1) « historical arguments » : horizon problem t x y

t x y last scattering surface (LSS) are all LSS points within causal contact ? photon decoupling

1) « historical arguments » : horizon problem t x y Last scattering surface (LSS) ↓ initial singularity Hubble radius at decoupling: ~1° photon decoupling

1) « historical arguments » : horizon problem t x y photon decoupling last scattering surface (LSS) x inflation

? curvature 1) « historical arguments » : monopoles and other defects ln a ln  matter radiation dark energy today phase transition defects

ln a ln  curvature matter radiation dark energy inflation phase transition 1) « historical arguments » : monopoles and other defects today

2) Basic model : a slow-rolling scalar field Inflation = stage of accelerated expansion Friedmann + e. c. : ä(t) > 0   + 3 p < 0 nearly homogeneous slow-rolling scalar fields :  = ½  ‘ 2 + V(  ) p = ½  ‘ 2 - V(  ) |dV/d  | < V/m P, |d 2 V/d  2 |< V/m P 2 V 

2) Basic model : a slow-rolling scalar field Inflation = stage of accelerated expansion Friedmann + e. c. : ä(t) > 0   + 3 p < 0 nearly homogeneous slow-rolling scalar field :  = ½  ‘ 2 + V(  ) p = ½  ‘ 2 - V(  ) |dV/d  | < V/m P, |d 2 V/d  2 |< V/m P 2 V 

2) Basic model : a slow-rolling scalar field Inflation = stage of accelerated expansion Friedmann + e. c. : ä(t) > 0   + 3 p < 0 nearly homogeneous slow-rolling scalar field :  = ½  ‘ 2 + V(  ) p = ½  ‘ 2 - V(  ) |dV/d  | < V/m P, |d 2 V/d  2 |< V/m P 2 V  end of inflation: field oscillates and decays in particles which finally thermalize

2) Basic model : primordial cosmological fluctuations fluctuations today

2) Basic model : primordial cosmological fluctuations fluctuations at decoupling

2) Basic model : primordial cosmological fluctuations origin of fluctuations ?

2) Basic model : primordial cosmological fluctuations decelerated expansion : - causal horizon = Hubble radius ( R H = c/H ) - R H (t) grows faster than a(t) causal acausal time MATTER DOMINATION  RADIATION DOMINATION RHRH primodial cosmological perturbations distance

RHRH  2) Basic model : primordial cosmological fluctuations phase transition no coherent fluctuations decelerated expansion : - causal horizon = Hubble radius ( R H = c/H ) - R H (t) grows faster than a(t) time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

2) Basic model : primordial cosmological fluctuations RHRH distance INFLATION accelerated expansion : - causal horizon » Hubble radius - R H (t) grows more slowly than a(t)  time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

2) Basic model : primordial cosmological fluctuations RHRH distance INFLATION quantum fluctuations of  and h  grow to macroscopic scales - normalization and evolution imposed by quantum mechanics  time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

2) Basic model : primordial cosmological fluctuations RHRH distance INFLATION Hubble crossing, Bogolioubov transformation - “squeezed state” → classical stochastic fluctuations 2  time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

2) Basic model : primordial cosmological fluctuations RHRH distance INFLATION perturbation amplitude frozen since - «primordial spectrum» of scalar and tensor perturbations 2 3  time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

2) Basic model : primordial cosmological fluctuations RHRH distance INFLATION insensitive to microscopical evolution (reheating, phase transition) - primordial spectrum mediated to , b,, CDM 4  time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

2) Basic model : primordial cosmological fluctuations RHRH distance INFLATION acoustic oscillations and decoupling - CMB anisotropies → primordial spectrum inherited from 3 5  time MATTER DOMINATION RADIATION DOMINATION primodial cosmological perturbations

3)Agreement between CMB maps and inflation

inflation predict that perturbations are: 1.coherent 2.nearly gaussian 3.adiabatic* 4.nearly scale invariant* *for simplest inflationary models 3)Agreement between CMB maps and inflation

RHRH distance INFLATION decoupling time coherence of inflationary fluctuations : 3)Agreement between CMB maps and inflation primodial cosmological perturbations  time MATTER DOMINATION RADIATION DOMINATION

RHRH distance INFLATION absence of coherence in the case of topological defects : decoupling 3)Agreement between CMB maps and inflation primodial cosmological perturbations  time MATTER DOMINATION RADIATION DOMINATION

inflation predict that perturbations are: 1.coherent 2.nearly gaussian 3.adiabatic* 4.nearly scale invariant* *for simplest inflationary models 3)Agreement between CMB maps and inflation validated (existence of acoustic peaks)

inflation predict that perturbations are: 1.coherent 2.nearly gaussian 3.adiabatic* 4.nearly scale invariant* *for simplest inflationary models 3)Agreement between CMB maps and inflation validated (statistical analysis of CMB maps) validated (existence of acoustic peaks)

inflation predict that perturbations are: 1.coherent 2.nearly gaussian 3.adiabatic* 4.nearly scale invariant* *for simplest inflationary models validated (peak scale) 3)Agreement between CMB maps and inflation validated (statistical analysis of CMB maps) validated (existence of acoustic peaks)

inflation predict that perturbations are: 1.coherent 2.nearly gaussian 3.adiabatic* 4.nearly scale invariant* *for simplest inflationary models validated (peak scale) 3)Agreement between CMB maps and inflation validated (statistical analysis of CMB maps) validated (existence of acoustic peaks)

slow rolling scalar field : ASAS k amplitude  V 3/2 /V’ tilt (1-n S )  (V’/V) 2, V’’/V + hider order corrections (tilt running, …) ATAT k amplitude  V 1/2 tilt n T  (V’/V) 2 + higher order corrections (tilt running, …)  V  3)Agreement between CMB maps and inflation scale invariance :

inflation predict that perturbations are: 1.coherent 2.nearly gaussian 3.adiabatic* 4.nearly scale invariant* *for simplest inflationary models validated (peak scale) 3)Agreement between CMB maps and inflation validated (statistical analysis of CMB maps) validated (existence of acoustic peaks) validated (peak amplitudes)

single field slow-roll inflation : ASAS k amplitude  V 3/2 /V’ tilt (1-n S )  (V’/V) 2, V’’/V + next-order corrections (running of the tilt, …) ATAT k amplitude  V 1/2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …)  V  4)current constraints on inflation

ASAS k amplitude  V 3/2 /V’ tilt (1-n S )  (V’/V) 2, V’’/V + next-order corrections (running of the tilt, …) ATAT k amplitude  V 1/2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …) overall amplitude = 0.5x10 -5 m p 3 4)current constraints on inflation

ASAS k amplitude  V 3/2 /V’ = 0.5x10 -5 m p 3 tilt (1-n S )  2.25 (V’/V) 2 - V’’/V = 0.5 m p -2 + next-order corrections (running of the tilt, …) ATAT k amplitude  V 1/2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …) overall slope 4)current constraints on inflation

ASAS k ATAT k amplitude  V 1/2 < (3.7x10 16 GeV) 2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …) amplitude  V 3/2 /V’ = 0.5x10 -5 m p 3 tilt (1-n S )  2.25 (V’/V) 2 - V’’/V = 0.5 m p -2 + next-order corrections (running of the tilt, …) absence of tensors 4)current constraints on inflation

ASAS k ATAT k amplitude  V 1/2 < (3.7x10 16 GeV) 2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …) amplitude  V 3/2 /V’ = 0.5x10 -5 m p 3 tilt (1-n S )  2.25 (V’/V) 2 - V’’/V = 0.5 m p -2 + next-order corrections (running of the tilt, …) absence of tensors 4) current constraints on inflation Energy scale of inflation still unknown !! Self-consistency relation still not checked !!

 future CMB experiments (B-polarization) : r ~ (factor 50 pour V)  future space-based GW interferometers : r ~ (BBO) (factor 5000 pour V) measure r, n t : inflationary energy scale + self-consistency r=-8n t measure r : inflationary energy scale no GW detected : inflation unconstrained new physics at GeV (extra-D ?) ordinary QFT (SUSY, PNGB…) 4)current constraints on inflation Energy scale of inflation still unknown !! Self-consistency relation still not checked !!

ASAS k ATAT k amplitude  V 1/2 < (3.7x10 16 GeV) 2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …) amplitude  V 3/2 /V’ = 0.5x10 -5 m p 3 tilt (1-n S )  2.25 (V’/V) 2 - V’’/V = 0.5 m p -2 + next-order corrections (running of the tilt, …) ? 4)current constraints on inflation

ASAS k ATAT k amplitude  V 1/2 < (3.7x10 16 GeV) 2 tilt n T  (V’/V) 2 + next-order corrections (running of the tilt, …) amplitude  V 3/2 /V’ = 0.5x10 -5 m p 3 tilt (1-n S )  2.25 (V’/V) 2 - V’’/V = 0.5 m p -2 + next-order corrections (running of the tilt, …) ? 4)current constraints on inflation negative running, or no running????

4)current constraints on inflation negative running, or no running???? no running (power law spectrum) negative running (convex spectrum) WMAP3+SDSS

4)current constraints on inflation negative running, or no running????  Theoretical prejudice: Deep in the slow-roll limit, running ≈ 0 ( n s -1 ~ , n run ~  2 )  Do we expect to be deep in the slow-roll regime? Question of philosophy and aesthetics…

4)current constraints on inflation negative running, or no running???? 1)Minimalistic aesthetics: simple potential (monomial, polynomial, simple function) slow-roll params  (  ) monotonically growing/decreasing 60 e-folds before the end, must be deep in slow-roll expect running ≈ 0 2)Modesty and pragmatism: V(  ) may have any shape (many scalars, landscape…) we can only reconstruct “observable region” (no assumptions on what’s before/after) possible large running (and beyond)…

4)current constraints on inflation J.L. & W.Valkenburg, in preparation

r Small field models  «m P CONCAVE, V’’>0 CONVEX, V’’<0 n large field models  ~m P V 3/2 /V’ ~ m p if V’ ~ V/ ,  V~(10 16 GeV) 4  ~m P

r CONCAVE, V’’>0 CONVEX, V’’<0  =6  =4  =2 monomial potentials V= (...)    =1 n

r CONCAVE, V’’>0 CONVEX, V’’<0  =6  =4  =2 new inflation V=V 0 [1- (…)   +...]  =1 monomial potentials V= (...)   n

r CONCAVE, V’’>0 CONVEX, V’’<0  =6  =4  =2 monomial  =1 Loop correction monomial potentials V= (...)   Hybrid inflation  =1 new inflation V=V 0 [1- (…)   +...] n

r n CONCAVE, V’’>0 CONVEX, V’’<0  =4  =2 monomial  =1 Loop correction monomial potentials V= (...)   new inflation V=V 0 [1- (…)   +...]  =1  =6 WMAP-3 +SDSS