From CIS to CTS We must transform from Conventional Inertial System to Conventional Terrestrial System using siderial time, θ: Rotation Matrix C.C.Tscherning, 2011-10-25.
From q-system to CIS 3 rotations. Ri with integer i subscript is rotation about i-axis. Rxu is rotation from u to x. C.C.Tscherning, 2011-10-25.
Elliptic orbit We use spherical coordinates r,λ in (q1,q2)-plane C.C.Tscherning, 2011-10-25.
Angular momentum λ is arbitrary := 0 ! C.C.Tscherning, 2011-10-25.
Integration With u=1/r C.C.Tscherning, 2011-10-25.
Integration C.C.Tscherning, 2011-10-25.
If ellipse with center in (0,0) Ellipse as solution If ellipse with center in (0,0) C.C.Tscherning, 2011-10-25.
Expressed in orbital plane C.C.Tscherning, 2011-10-25.
Parameter change C.C.Tscherning, 2011-10-25.
Further substitution C.C.Tscherning, 2011-10-25.
Transformation to CIS C.C.Tscherning, 2011-10-25.
Velocity C.C.Tscherning, 2011-10-25.
From orbital plane to CIS . C.C.Tscherning, 2011-10-25.
Determination of f . C.C.Tscherning, 2011-10-25.
General equations of motion (Kaula 3.2)I2.1a C.C.Tscherning, 2009-10-25.
Change of variables . C.C.Tscherning, 2009-10-25.
Kaula (3.38) . C.C.Tscherning, 2009-10-25.
We take the zero term out: Force Function We take the zero term out: C.C.Tscherning, 2009-10-25.
Conversion of spherical harmonics (Kaula, 3.3)I2.2a We want to express the terms in the expansion in Kepler variables: . C.C.Tscherning, 2011-10-25.
Kaula 3.72, 3.73. C.C.Tscherning, 2011-10-25.
Kaula 3.74. C.C.Tscherning, 2011-10-25.
Kaula 3.75. With C20=-0.00010827, e=0.001, a=1.2ae C.C.Tscherning, 2011-10-25.
Orbit with repeating ground track Applications Orbit with repeating ground track Orbit which gives resonance with specific term(s) Orbit which is sun-syncroneous Orbit which enables close ”encounter” with an object, such as the poles. C.C.Tscherning, 2011-10-25.
Sol-synkron bane Så må vi have: C.C.Tscherning, 2011-10-25.
Geostationær C.C.Tscherning, 2011-10-25.