© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 2 Theory –Unification –Unification in Prolog –Proof search Exercises –Correction exercises.

Slides:



Advertisements
Similar presentations
© Johan Bos Logic Programming About the course –Taught in English –Tuesday: mostly theory –Thursday: practical work [lab] Teaching material –Learn Prolog.
Advertisements

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 10: Cuts and Negation Theory –Explain how to control Prolog`s backtracking behaviour with.
Logic Programming Lecture 1: Getting started. Getting started We’ll use SICStus Prolog Free for UofE students Available on all DICE machines
Lecturer: Dr. Abeer Mahmoud Logic Programming in Prolog.
Lecturer: Dr. Abeer Mahmoud Logic Programming in Prolog.
AR for Horn clause logic Introducing: Unification.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 6: More Lists Theory –Define append/3, a predicate for concatenating two lists, and illustrate.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 6: More Lists Theory –Define append/3, a predicate for concatenating two lists, and illustrate.
Prolog: List © Patrick Blackburn, Johan Bos & Kristina Striegnitz.
1 Introduction to Prolog References: – – Bratko, I., Prolog Programming.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 1 Introduction to Prolog.
1 COMP313A Programming Languages Logic Programming (3)
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 3: Recursion Theory –Introduce recursive definitions in Prolog –Four examples –Show that there.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 3: Recursion Theory –Introduce recursive definitions in Prolog –Four examples –Show that there.
Prolog: Unification & Recursion © Patrick Blackburn, Johan Bos & Kristina Striegnitz.
1 COMP 144 Programming Language Concepts Felix Hernandez-Campos Lecture 27: Prolog’s Resolution and Programming Techniques COMP 144 Programming Language.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 10 Exercises –Solutions to Exercises of LPN chapter 9 Theory –Explain how to control Prolog`s.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Logic Programming About the course –Taught in English –Tuesday: mostly theory –Thursday: practical.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 5: Arithmetic Theory –Introduce Prolog`s built-in abilities for performing arithmetic –Apply.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 4: Lists Theory –Introduce lists, an important recursive data structure often used in Prolog.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 9: A closer look at terms Theory –Introduce the == predicate –Take a closer look at term structure.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 5: Arithmetic Theory –Introduce Prolog`s built-in abilities for performing arithmetic –Apply.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 4: Lists Theory –Introduce lists, an important recursive data structure often used in Prolog.
LISP and PROLOG AI Programming Language Submitted To: Dr. Hesham El-Zoka Submitted By: Eng. Ismail Fathalla El-Gayar.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Horn clauses A literal is an atomic formula or its negation A clause is a disjunction of literals.
Prolog Programming Lecture Module 13. Objective ● What is Prolog? ● Prolog program ● Syntax of Prolog ● Prolog Control Strategy ● Execution of Prolog.
Formal Models of Computation Part II The Logic Model
CSC 270 – Survey of Programming Languages Prolog Lecture 1 – Facts, Rules, and Queries.
LING 388: Language and Computers Sandiway Fong Lecture 4.
Agile Software Development Lab 2008 Dr. Günter Kniesel, Daniel Speicher, Tobias Rho, Pascal Bihler Spring 2008 R O O T S Prolog - Part 1 Alexis Raptarchis.
1 Lecture 15: Introduction to Logic Programming with Prolog (Section 11.3) A modification of slides developed by Felix Hernandez-Campos at UNC Chapel Hill.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 3 “Input & Output”, Negation, Search.
30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists1 Recursion, Structures, and Lists Artificial Intelligence Programming in Prolog Lecturer: Tim.
CSC 270 – Survey of Programming Languages Prolog Lecture 2 – Unification and Proof Search.
Prolog Programming in Logic. 2 SWI-Prolog SWI-Prolog is a good, standard Prolog for Windows and Linux Can be installed on Macintosh with a little more.
1 Knowledge Based Systems (CM0377) Lecture 3 (Last modified 5th February 2001)
PROLOG SYNTAX AND MEANING Ivan Bratko University of Ljubljana Faculty of Computer and Info. Sc. Ljubljana, Slovenia.
Rules Statements about objects and their relationships Expess ◦ If-then conditions  I use an umbrella if there is a rain  use(i, umbrella) :- occur(rain).
Lab Lecture#4 Lecturer : Sheriff Nafisa TA : Mubarakah Otbi, Duaa al Ofi, Huda al Hakami.
CS 326 Programming Languages, Concepts and Implementation Instructor: Mircea Nicolescu Lecture 21.
Introduction to Prolog. Outline What is Prolog? Prolog basics Prolog Demo Syntax: –Atoms and Variables –Complex Terms –Facts & Queries –Rules Examples.
© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 9: A closer look at terms Theory –Introduce the == predicate –Take a closer look at term structure.
Operators in Prolog © Patrick Blackburn, Johan Bos & Kristina Striegnitz.
Introduction to Prolog
Introduction to Prolog © Patrick Blackburn, Johan Bos & Kristina Striegnitz.
CSE 3302 Programming Languages Chengkai Li Spring 2008 Logic Programming: Prolog Lecture 21 – Prolog, Spring CSE3302 Programming Languages, UT-Arlington.
1 Knowledge Based Systems (CM0377) Lecture 6 (last modified 20th February 2002)
LING/C SC/PSYC 438/538 Lecture 15 Sandiway Fong. Did you install SWI Prolog?
Programming Language Concepts Lecture 17 Prepared by Manuel E. Bermúdez, Ph.D. Associate Professor University of Florida Logic Programming.
CS 554: Knowledge base systems Part-4: Prolog- 2 By Dr. Syed Noman Hasany.
Prolog 3 Tests and Backtracking 1. Arithmetic Operators Operators for arithmetic and value comparisons are built-in to Prolog = always accessible / don’t.
Chapter 2 Syntax and meaning of prolog programs Part 1.
Prolog Fundamentals. 2 Review Last Lecture A Prolog program consists of a database of facts and rules, and queries (questions). –Fact:.... –Rule:... :-....
Logic Programming Dr. Yasser Nada Fall 2010/2011 Lecture 3 1 Logic Programming.
Instructor :Bayan Ghozlan الاستاذه : بيان غزلان.  البرولوغ Prolog هي لغة برمجة منطقية. وتعني برمجه المنطق programing language  تم اختراع اللغة بواسطة.
Logic Programming Lecture 2: Unification and proof search.
Pengenalan Prolog Disampaikan Oleh : Yusuf Nurrachman, ST, MMSI.
علمتني الثلوج أن أكون كبياض الثلج لا يحمل قلبي غير الحب والعطف والرحمة لا أسيئ الظن بالأخرين ولا أحكم عليهم من مظهرهم فإذا لم تعاشرهم فأنت تجهلهم !
Matching Matching and unification. Rules for matching terms. Examples of matching. –The most general instantiation. Computation using matching.
Unification, Recursion and Lists
Chapter 11 :: Logic Languages
Prolog syntax + Unification
Prolog: cut & fail © Patrick Blackburn, Johan Bos & Kristina Striegnitz.
Prolog Search Strategy
© Patrick Blackburn, Johan Bos & Kristina Striegnitz
Chapter 12 :: Logic Languages
Chapter Two: Syntax and Meaning of Prolog Programs
Introduction to Prolog
Chapter 2 Syntax and meaning of prolog programs
Chapter 12 :: Logic Languages
Presentation transcript:

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 2 Theory –Unification –Unification in Prolog –Proof search Exercises –Correction exercises of LPN chapter 1 –Exercises of LPN chapter 2

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Aim of this lecture Discuss unification in Prolog –Show how Prolog unification differs from standard unification Explain the search strategy that Prolog uses when it tries to deduce new information from old, using modus ponens

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Unification Recall previous example, where we said that Prolog unifies woman(X) with woman(mia) thereby instantiating the variable X with the atom mia.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Terms Simple TermsComplex Terms ConstantsVariables AtomsNumbers Recall Prolog Terms

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Unification Working definition: Two terms unify if they are the same term or if they contain variables that can be uniformly instantiated with terms in such a way that the resulting terms are equal

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Unification This means that: mia and mia unify 42 and 42 unify woman(mia) and woman(mia) unify This also means that: vincent and mia do not unify woman(mia) and woman(jody) do not unify

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Unification What about the terms: mia and X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Unification What about the terms: mia and X woman(Z) and woman(mia)

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Unification What about the terms: mia and X woman(Z) and woman(mia) loves(mia,X) and loves(X,vincent)

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Instantiations When Prolog unifies two terms it performs all the necessary instantiations, so that the terms are equal afterwards This makes unification a powerful programming mechanism

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Revised Definition 1/3 1.If T 1 and T 2 are constants, then T 1 and T 2 unify if they are the same atom, or the same number.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Revised Definition 2/3 1.If T 1 and T 2 are constants, then T 1 and T 2 unify if they are the same atom, or the same number. 2.If T 1 is a variable and T 2 is any type of term, then T 1 and T 2 unify, and T 1 is instantiated to T 2. (and vice versa)

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Revised Definition 3/3 1.If T 1 and T 2 are constants, then T 1 and T 2 unify if they are the same atom, or the same number. 2.If T 1 is a variable and T 2 is any type of term, then T 1 and T 2 unify, and T 1 is instantiated to T 2. (and vice versa) 3.If T 1 and T 2 are complex terms then they unify if: a)They have the same functor and arity, and b)all their corresponding arguments unify, and c)the variable instantiations are compatible.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Prolog unification: =/2 ?- mia = mia. yes ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Prolog unification: =/2 ?- mia = mia. yes ?- mia = vincent. no ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Prolog unification: =/2 ?- mia = X. X=mia yes ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz How will Prolog respond? ?- X=mia, X=vincent.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz How will Prolog respond? ?- X=mia, X=vincent. no ?- Why? After working through the first goal, Prolog has instantiated X with mia, so that it cannot unify it with vincent anymore. Hence the second goal fails.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example with complex terms ?- k(s(g),Y) = k(X,t(k)).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example with complex terms ?- k(s(g),Y) = k(X,t(k)). X=s(g) Y=t(k) yes ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example with complex terms ?- k(s(g),t(k)) = k(X,t(Y)).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example with complex terms ?- k(s(g),t(k)) = k(X,t(Y)). X=s(g) Y=k yes ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz One last example ?- loves(X,X) = loves(marsellus,mia).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Prolog and unification Prolog does not use a standard unification algorithm Consider the following query: ?- father(X) = X. Do these terms unify or not?

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Infinite terms ?- father(X) = X. X=father(father(father(father(father(father (father(father(father(father(father(father( father(father(father(father(father(father(f ather(father(father(father(father(father(f ather(father(father(father(father(father(f ather(father(father(father(father(father(f ather(father(father(father(father(father(f ather(father(father(father(father(father(

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Infinite terms ?- father(X) = X. X=father(father(father(…)))) yes ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Occurs Check A standard unification algorithm carries out an occurs check If it is asked to unify a variable with another term it checks whether the variable occurs in the term In Prolog: ?- unify_with_occurs_check(father(X), X). no

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Programming with Unification vertical( line(point(X,Y), point(X,Z))). horizontal( line(point(X,Y), point(Z,Y))).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Programming with Unification vertical( line(point(X,Y), point(X,Z))). horizontal( line(point(X,Y), point(Z,Y))). ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Programming with Unification vertical( line(point(X,Y), point(X,Z))). horizontal( line(point(X,Y), point(Z,Y))). ?- vertical(line(point(1,1),point(1,3))). yes ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Programming with Unification vertical( line(point(X,Y), point(X,Z))). horizontal( line(point(X,Y), point(Z,Y))). ?- vertical(line(point(1,1),point(1,3))). yes ?- vertical(line(point(1,1),point(3,2))). no ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Programming with Unification vertical( line(point(X,Y), point(X,Z))). horizontal( line(point(X,Y), point(Z,Y))). ?- horizontal(line(point(1,1),point(1,Y))). Y = 1; no ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Programming with Unification vertical( line(point(X,Y), point(X,Z))). horizontal( line(point(X,Y), point(Z,Y))). ?- horizontal(line(point(2,3),Point)). Point = point(_554,3); no ?-

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Proof Search Now that we know about unification, we are in a position to learn how Prolog searches a knowledge base to see if a query is satisfied. In other words: we are ready to learn about proof search

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). ?- f(X), g(X), h(X). Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). X=a Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). ?- h(a). X=a Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). ?- h(a). X=a † Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). ?- h(a). X=a ?- g(b), h(b). X=b † Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). ?- h(a). X=a ?- g(b), h(b). X=b ?- h(b). † Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). Y=b ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). ?- h(a). X=a ?- g(b), h(b). X=b ?- h(b). † Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Example: search tree f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X). ?- k(Y). Y=b; no ?- ?- k(Y). ?- f(X), g(X), h(X). ?- g(a), h(a). ?- h(a). X=a ?- g(b), h(b). X=b ?- h(b). † Y=X

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y). ?- loves(A,C), loves(B,C). X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y). X=vincent Y=vincent ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia B=vincent X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y). X=vincent Y=vincent; X=vincent Y=marsellus ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia B=vincent B=marsellus X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). ?- jealous(X,Y). X=vincent Y=vincent; X=vincent Y=marsellus; ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia ?- loves(B,mia). A=marsellus C=mia B=vincent B=marsellus X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). …. X=vincent Y=marsellus; X=marsellus Y=vincent ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia ?- loves(B,mia). A=marsellus C=mia B=vincent B=marsellus X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). …. X=marsellus Y=vincent; X=marsellus Y=marsellus ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia ?- loves(B,mia). A=marsellus C=mia B=vincent B=marsellus X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Another example loves(vincent,mia). loves(marsellus,mia). jealous(A,B):- loves(A,C), loves(B,C). …. X=marsellus Y=vincent; X=marsellus Y=marsellus; no ?- jealous(X,Y). ?- loves(A,C), loves(B,C). ?- loves(B,mia). A=vincent C=mia ?- loves(B,mia). A=marsellus C=mia B=vincent B=marsellus X=AY=B

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Solution Exercise vINCENT Atom 2. Footmassage Variable 3. variable23 Atom 4. Variable2000 Variable 5. big_kahuna_burger Atom 6. 'big kahuna burger' Atom 7. big kahuna burger neither: spaces without single quotes 8. 'Jules' Atom 9. _Jules Variable: starts with an underscore 10. '_Jules’ Atom: in single quotes Which of the following sequences of characters are atoms, which are variables, and which are neither?

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Solution Exercise loves(Vincent,mia) complex: loves/2 2. 'loves(Vincent,mia)' atom (in single quotes) 3. Butch(boxer) not a term (the functor must be an atom, and it is here a variable) 4. boxer(Butch) complex: boxer/1 5. and(big(burger),kahuna(burger)) complex: and/2, big/1, kahuna/1 6. and(big(X),kahuna(X)) complex: and/2, big/1, kahuna/1 7. _and(big(X),kahuna(X)) not a term (the functor must be an atom, and it is here a variable) 8. (Butch kills Vincent) not a term (the character sequence ‘(Butch’ does not start with a lower-case letter or with a single quote, so it is not an atom; it does not start with an upper-case letter or with an underscore, so it is not a variable; and it is obviously not a number or a complex term.) 9. kills(Butch Vincent) not a term (an operator is missing for the variables ‘Butch’ and ‘Vincent’, or a comma is missing for them to be arguments of the functor ‘kills’) 10. kills(Butch,Vincent not a term (closing parenthesis for it to be a predicate; and the opening parenthesis is not allowed in atoms and is not an operator) Which of the following sequences of characters are atoms, which are variables, which are complex terms, and which are not terms at all? Give the functor and arity of each complex term.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Solution Exercise 1.3 woman(vincent). woman(mia). man(jules). person(X) :- man(X); woman(X). loves(X,Y) :- knows(Y,X). father(Y,Z) :- man(Y), son(Z,Y). father(Y,Z) :- man(Y), daughter(Z,Y). goal head Total 3 facts (clauses 1-3), 4 rules (clauses 4-7), 7 clauses and 8 predicates (woman/1, man/1, person/1, loves/2, knows/2, father/2, son/2, daughter/2) How many facts, rules, clauses, and predicates are there in the following knowledge base? What are the heads of the rules, and what are the goals they contain?

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Exercises Chapter 2 2.1, 2.2, 2.4

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Summary of this lecture In this lecture we have –defined unification –looked at the difference between standard unification and Prolog unification –introduced search trees

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Next lecture Discuss recursion in Prolog –Introduce recursive definitions in Prolog –Show that there can be mismatches between the declarative meaning of a Prolog program, and its procedural meaning.