Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.

Slides:



Advertisements
Similar presentations
1 Series Resonant Converter with Series-Parallel Transformers for High Input Voltage Applications C-H Chien 1,B-R Lin 2,and Y-H Wang 1 1 Institute of Microelectronics,
Advertisements

M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Ch6 DC-DC Converters 6-1 Linear voltage regulators Fig. 6.1 Adjustingbasecurrent, => linear DC-DC converter orlinear regulator Thetransistor operates in.
Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系
7. Introduction to DC/DC Converters
Quasi-square-wave ZVS converters
AC modeling of quasi-resonant converters Extension of State-Space Averaging to model non-PWM switches Use averaged switch modeling technique: apply averaged.
Chapter 20 Quasi-Resonant Converters
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Active clamp circuits Can be viewed as a lossless voltage-clamp snubber.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures The conventional forward converter Max v ds = 2V g + ringing Limited.
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters 20.2 Resonant switch topologies Basic ZCS switch cell: SPST switch SW : Voltage-bidirectional.
AC modeling of converters containing resonant switches
1 Parameters for various resonant switch networks.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Reduction of power converter size through increase of switching frequency Increasing.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Soft-switching converters with constant switching frequency With two.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures Zero-voltage transition converters The phase-shifted full bridge.
1 Quasi-square-wave ZVS converters A quasi-square-wave ZVS buck Resonant transitions but transistor and diode conduction intervals are similar to PWM Tank.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.4 Load-dependent properties of resonant converters Resonant inverter design objectives:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 General Solution for the Steady-State Characteristics of the Series.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 36 Midterm Exam Averages: all students 78.1 on-campus students 78.3 off-campus.
Parallel resonant dc-dc converter
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Operation of the full bridge below resonance: Zero-current switching Series.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Chapter 19 Resonant Conversion Introduction 19.1Sinusoidal analysis of resonant converters.
1 AC modeling of quasi-resonant converters Extension of State-Space Averaging to model non-PWM switches Use averaged switch modeling technique: apply averaged.
Switching-Mode Regulators
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
1 Manipulation to standard state-space form Eliminate X s1 and X s2 from previous equations. Result is: Collect terms, and use the identity µ + µ’ = 1:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Operating Modes of the Series Resonant Converter Lecture 23 Resonant.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Upcoming Assignments Preparation for Lecture 2: Read Section 19.1, Sinusoidal analysis.
1 Midterm statistics – On campus students only ECEN 5817 Midterm Exam, Spring 2008 On-campus students Average = 86.3 % Averages by problem: / 35.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Chapter 5 DC to DC Converters (Choppers)
Chapter 8 Switching Power Supplies
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Announcements Correction to HW #2, Problem 19.3 solution Clarification.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion For both on-campus and CAETE students: A DVD of recorded lectures from Professor Erickson’s.
Waveforms of the half-wave ZCS quasi-resonant switch cell
Buck-derived full-bridge converter
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Controlled Rectifiers
Power Electronics Notes 07A Introduction to DC/DC Converters
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Soft-Switching DC-DC Converter Is to shape the voltage or the current waveform by creating a resonant condition to: Force the voltage across the switching.
Zero Voltage Switching Quasi-resonant Converters
Chapter 6 Soft-Switching dc-dc Converters Outlines
Unit-3 RECTIFIERS, FILTERS AND REGULATORS :Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit, Inductor.
Chapter 3 DC to DC Converters
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Solution of converter voltage conversion ratio M = V/V g Eliminate R e :
A NOVEL CONTROL METHOD OF DC-DC CONVERTERS Dr.M.Nandakumar Professor Department of Electrical engineering Govt. Engineering College Thrissur 1 Dept. of.
Diode Rectifier Circuits Section 4.5. In this Lecture, we will:  Determine the operation and characteristics of diode rectifier circuits, which is the.
6. Unregulated Power Supply Design
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.3 Soft switching Soft switching can mitigate some of the mechanisms of switching.
Full Wave Rectifier Circuit with Working Theory
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Switching-Mode Regulators
Zero-current Switching Quasi-resonant Converters
DC-DC PWM Converters Lecture Note 5.
Fault detection Lecture (3).
General Solution for the Steady-State Characteristics of the Series Resonant Converter Type k CCM Mode index k and subharmonic number 
Buck-derived full-bridge converter
Power Converter’s Discontinuous Current Mode Operation
ECEN 5817 Housekeeping update
DC-DC Switch-Mode Converters
ECEN 5817 Housekeeping I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from Spr. 06. This will make it easy if you choose.
AC modeling of converters containing resonant switches
Presentation transcript:

Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching quasi-resonant switch cell Waveforms of the half-wave ZCS quasi-resonant switch cell The average terminal waveforms The full-wave ZCS quasi-resonant switch cell 20.2Resonant switch topologies The zero-voltage-switching quasi-resonant switch The zero-voltage-switching multiresonant switch Quasi-square-wave resonant switches 20.3Ac modeling of quasi-resonant converters 20.4Summary of key points

Fundamentals of Power Electronics 4 Chapter 20: Quasi-Resonant Converters The resonant switch concept A quite general idea: 1.PWM switch network is replaced by a resonant switch network 2.This leads to a quasi-resonant version of the original PWM converter Example:realization of the switch cell in the buck converter

Fundamentals of Power Electronics 5 Chapter 20: Quasi-Resonant Converters 20.1 The zero-current-switching quasi-resonant switch cell Tank inductor L r in series with transistor: transistor switches at zero crossings of inductor current waveform Tank capacitor C r in parallel with diode D 2 : diode switches at zero crossings of capacitor voltage waveform Two-quadrant switch is required: Half-wave: Q 1 and D 1 in series, transistor turns off at first zero crossing of current waveform Full-wave: Q 1 and D 1 in parallel, transistor turns off at second zero crossing of current waveform Performances of half-wave and full-wave cells differ significantly.

Fundamentals of Power Electronics 6 Chapter 20: Quasi-Resonant Converters The switch conversion ratio µ In steady state: A generalization of the duty cycle d(t) The switch conversion ratio µ is the ratio of the average terminal voltages of the switch network. It can be applied to non-PWM switch networks. For the CCM PWM case, µ = d. If V/V g = M(d) for a PWM CCM converter, then V/V g = M(µ) for the same converter with a switch network having conversion ratio µ. Generalized switch averaging, and µ, are defined and discussed in Section 10.3.

Fundamentals of Power Electronics 7 Chapter 20: Quasi-Resonant Converters Averaged switch modeling of ZCS cells It is assumed that the converter filter elements are large, such that their switching ripples are small. Hence, we can make the small ripple approximation as usual, for these elements: In steady state, we can further approximate these quantities by their dc values: Modeling objective: find the average values of the terminal waveforms  v 2 (t)  T s and  i 1 (t)  T s

Fundamentals of Power Electronics 8 Chapter 20: Quasi-Resonant Converters Waveforms of the half-wave ZCS quasi-resonant switch cell The half-wave ZCS quasi-resonant switch cell, driven by the terminal quantities  v 1 (t)  Ts and  i 2 (t)  Ts. Waveforms: Each switching period contains four subintervals

Fundamentals of Power Electronics 16 Chapter 20: Quasi-Resonant Converters

Fundamentals of Power Electronics 17 Chapter 20: Quasi-Resonant Converters

Fundamentals of Power Electronics 18 Chapter 20: Quasi-Resonant Converters

Fundamentals of Power Electronics 19 Chapter 20: Quasi-Resonant Converters

Fundamentals of Power Electronics 20 Chapter 20: Quasi-Resonant Converters Analysis result: switch conversion ratio µ Switch conversion ratio: with This is of the form

Fundamentals of Power Electronics 21 Chapter 20: Quasi-Resonant Converters Characteristics of the half-wave ZCS resonant switch J s ≤ 1 Switch characteristics: Mode boundary:

Fundamentals of Power Electronics 22 Chapter 20: Quasi-Resonant Converters Buck converter containing half-wave ZCS quasi-resonant switch Conversion ratio of the buck converter is (from inductor volt-second balance): For the buck converter, ZCS occurs when Output voltage varies over the range

Fundamentals of Power Electronics 23 Chapter 20: Quasi-Resonant Converters Boost converter example For the boost converter, Half-wave ZCS equations:

Fundamentals of Power Electronics 24 Chapter 20: Quasi-Resonant Converters

Fundamentals of Power Electronics 25 Chapter 20: Quasi-Resonant Converters The full-wave ZCS quasi-resonant switch cell Half wave Full wave

Fundamentals of Power Electronics 26 Chapter 20: Quasi-Resonant Converters

Fundamentals of Power Electronics 27 Chapter 20: Quasi-Resonant Converters Analysis: full-wave ZCS Analysis in the full-wave case is nearly the same as in the half-wave case. The second subinterval ends at the second zero crossing of the tank inductor current waveform. The following quantities differ: In either case, µ is given by

Fundamentals of Power Electronics 28 Chapter 20: Quasi-Resonant Converters Full-wave cell: switch conversion ratio µ Full-wave case: P 1 can be approximated as so

Fundamentals of Power Electronics 29 Chapter 20: Quasi-Resonant Converters 20.2 Resonant switch topologies Basic ZCS switch cell: SPST switch SW : Voltage-bidirectional two-quadrant switch for half-wave cell Current-bidirectional two-quadrant switch for full-wave cell Connection of resonant elements: Can be connected in other ways that preserve high-frequency components of tank waveforms

Fundamentals of Power Electronics 30 Chapter 20: Quasi-Resonant Converters Connection of tank capacitor Connection of tank capacitor to two other points at ac ground. This simply changes the dc component of tank capacitor voltage. The ac high- frequency components of the tank waveforms are unchanged.

Fundamentals of Power Electronics 31 Chapter 20: Quasi-Resonant Converters A test to determine the topology of a resonant switch network Replace converter elements by their high-frequency equivalents: Independent voltage source V g : short circuit Filter capacitors: short circuits Filter inductors: open circuits The resonant switch network remains. If the converter contains a ZCS quasi-resonant switch, then the result of these operations is