Near-field thermal radiation

Slides:



Advertisements
Similar presentations
The Beginning of the Quantum Physics
Advertisements

SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.
Stimulated emissionSpontaneous emission Light Amplification by Stimulated Emission of Radiation.
Optical sources Lecture 5.
Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM Invited Correlation-induced spectral (and other) changes Daniel F. V. James, Los Alamos.
Optical and thermal imaging of nanostructures with a scanning fluorescent particle as a probe. Near-field experiments : ESPCI, Paris, FranceLionel Aigouy,
ASTRONOMY 161 Introduction to Solar System Astronomy Class 9.
Resonances and optical constants of dielectrics: basic light-matter interaction.
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
Radiative Heat Transfer at the Nanoscale Jean-Jacques Greffet Institut d’Optique, Université Paris Sud Institut Universitaire de France CNRS.
Laboratoire EM2C. Near-field radiative heat transfer : application to energy conversion Jean-Jacques Greffet Ecole Centrale Paris, CNRS.
Single Molecule Fluorescence from Organic Dyes in Thin Polymer Films Robin Smith and Carl Grossman, Swarthmore College March 5, 2003.
Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals Stephane Berciaud, Laurent Cognet, Gerhard A. Blab, and Brahim.
Generation of short pulses
Third harmonic imaging of plasmonic nanoantennas
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Surface-waves generated by nanoslits Philippe Lalanne Jean Paul Hugonin Jean Claude Rodier INSTITUT d'OPTIQUE, Palaiseau - France Acknowledgements : Lionel.
Thermal Radiation Scanning Tunneling Microscopy Yannick De Wilde, Florian Formanek, Remi Carminati, Boris Gralak, Paul-Arthur Lemoine, Karl Joulain, Jean-Philippe.
Quantum and Classical Coincidence Imaging and Interference
1 R. Bachelot H. Ibn-El-Ahrach 1, O. Soppera 2, A. Vial 1,A.-S. Grimault 1, G. Lérondel 1, J. Plain 1 and P. Royer 1 R. Bachelot, H. Ibn-El-Ahrach 1, O.
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Workshop SLAC 7/27/04 M. Zolotorev Fluctuation Properties of Electromagnetic Field Max Zolotorev CBP AFRD LBNL.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Laws of Radiation Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Macro Description of highly complex Wave.
Radiation: Processes and Properties -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3.
Chapter 18 Bose-Einstein Gases Blackbody Radiation 1.The energy loss of a hot body is attributable to the emission of electromagnetic waves from.
Blackbody radiation How does a solid contain thermal energy? Can a vacuum be “hot”, have a temperature? Why does solid glow when it’s hot? Yes its fields.
Quantum Distributions
Attenuation by absorption and scattering
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Summer School On Plasmonics, Porquerolles Introduction to Surface Plasmon Theory Jean-Jacques Greffet Institut d’Optique Graduate School.
J.R.Krenn – Nanotechnology – CERN 2003 – Part 3 page 1 NANOTECHNOLOGY Part 3. Optics Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy.
Photon Statistics Blackbody Radiation 1.The energy loss of a hot body is attributable to the emission of electromagnetic waves from the body. 2.The.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Radiation Fundamental Concepts EGR 4345 Heat Transfer.
Terahertz Applications by THz Time Domain Spectroscopy
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
© 2010 Pearson Education, Inc. Slide Electromagnetic Induction and Electromagnetic Waves.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Spontaneous Emission in 2D Arbitrary Inhomogeneous Environment Peng-Fei Qiao, Wei E. I. Sha, Yongpin P. Chen, Wallace C. H. Choy, and Weng Cho Chew * Department.
1 PHYS 3313 – Section 001 Lecture #9 Wednesday, Feb. 12, 2014 Dr. Jaehoon Yu Determination of Electron Charge Line Spectra Blackbody Radiation Wednesday,
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Efficiency of thermal radiation energy-conversion nanodevices Miguel Rubi I. Latella A. Perez L. Lapas.
How to make a (better?) light bulb Nick Vamivakas Journal Club
Introduction to Thermal Radiation and Radiation Heat Transfer.
Atomic transitions and electromagnetic waves
Introduction to Thermal Radiation
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
Thermal Multiscale Modeling of Nanoparticle based Materials Sebastian Volz 1, Jean-Jacques Greffet 1 Denis Rochais 2, Gilberto Domingues 2 and Karl Joulain.
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
1 Teaching Innovation - Entrepreneurial - Global The Centre for Technology enabled Teaching & Learning D M I E T R, Wardha DTEL DTEL (Department for Technology.
Unit 12: Part 2 Quantum Physics. Overview Quantization: Planck’s Hypothesis Quanta of Light: Photons and the Photoelectric Effect Quantum “Particles”:
Basic Definitions Specific intensity/mean intensity Flux
Blackbody. Kirchhoff’s Radiation  Radiated electromagnetic energy is the source of radiated thermal energy. Depends on wavelengthDepends on wavelength.
Evanescent waves cannot exist in the near-field! Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Bremen Workshop on Light Scattering 2016, Bremen,
Surface-Enhanced Raman Scattering (SERS)
Saturation Roi Levy. Motivation To show the deference between linear and non linear spectroscopy To understand how saturation spectroscopy is been applied.
Physical Principles of Remote Sensing: Electromagnetic Radiation
Fluctuation properties of chaotic light
RADIATION AND COMBUSTION PHENOMENA
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
PHYS 3313 – Section 001 Lecture #9
Interaction between Photons and Electrons
Really Basic Optics Instrument Sample Sample Prep Instrument Out put
Radiation in the Atmosphere
Atomic transitions and electromagnetic waves
Kenji Kamide* and Tetsuo Ogawa
Presentation transcript:

Near-field thermal radiation Rémi Carminati Laboratoire EM2C CNRS, Ecole Centrale Paris France remi.carminati@ecp.fr

ACI and ANR projects (France) EU Integrated project Acknowledgments K. Joulain (Poitiers) C. Henkel (Potsdam) Y. De Wilde (Paris) J.-J. Greffet (Paris) J.J. Sáenz (Madrid) M. Laroche, F. Marquier, C. Arnold (coherent thermal emission) J.P. Mulet (radiative transfer at small scale) Y. Chen (LPN, Marcoussis, samples) ACI and ANR projects (France) EU Integrated project

Outline Blackbody radiation in the near field Spectral behavior - connection to LDOS Spatial coherence Coherent thermal emission by microstructured surfaces Thermal emission STM : measuring the LDOS of surface waves Radiative transfer at mesoscopic scale T L

Radiative energy density Blackbody radiation T Planck’s function Radiative energy density u(w,T)

T Thermal emission by a heated body emissivity Planck’s function Incoherent summation of intensities Temperatures + emissivities : radiative transfer

Small is different Classical theory Mesoscopic scale Ray optics Incoherent summation of intensities (fluxes) Local radiative properties Opaque bodies (surface properties) L << l L << lcoh L << l L << lcoh L << d Waves Near field (surface waves) Coherence Interferences Non locality Volume radiation

Near-field blackbody radiation

Near-field thermal emission spectrum (SiC) Energy density Spectrum at T = 300 K SiC surface z SiC, T = 300 K Shchegrov, Joulain, Carminati, Greffet, PRL 85, 1548 (2000)

Physical origin of the near-field behavior Energy density LDOS Photon energy Bose-Einstein distribution Blackbody radiation : Surface electromagnetic modes (surface polaritons) Surface modes modify the LDOS Evanescent modes : near-field effect w peak

LDOS above an aluminum surface LDOS increases substantially in the near field Plasmon resonance Far-field value for d∞ and for w∞ Joulain, Carminati, Mulet, Greffet, Phys. Rev. B 68, 245405 (2003)

Asymptotic expression of the LDOS In the near field (z << l) : Local density of states : Resonance for Re[e(w)] = -1 Quasi-static fields

Surface polaritons induce spatial coherence Field spatial correlation Metal (Au) with surface plasmon Cristal (SiC) with surface phonon Coherence length ~ decay length of the polariton Example : 36 l for SiC at l = 11.36 mm Blackbody radiation Field spatial correlation T Carminati, Greffet, PRL 82, 1660 (1999)

Calculation of thermal fluctuating fields E(r,t) T Linear response 2) Spectral densities 3) Fluctuation-dissipation theorem Rytov, Kravtsov and Tatarskii, Principles of Statistical Radiophysics (Springer, Berlin, 1989)

Playing with surface modes : Coherent thermal emission

Antenna versus standard thermal source HF Interferences produce directivity Interferences if the fields are correlated along the antenna

Design of coherent thermal sources (surface phonon polaritons) q l Principle : grating coupling Ksw SiC Period : 6.25 mm Height : 0.285 mm Fill factor : 0.5

Experimental set-up Orientation control Heating (T contol) Blackbody Grating FTIR spectrometer Polarizer KRS5 R = 600 mm

Angular emission pattern at l = 11.36 mm q Infrared antenna l Green : theory T = 300 K Red : experiment T = 800 K Dl = 0.22 mm SiC Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002)

Emission pattern at different wavelengths Marquier et al., Phys. Rev. B. 69, 155412 (2004)

Extraordinary spatial coherence on tungsten surfaces due to surface plasmons Tungsten supports surface plasmons in the near infrared Plasmon contribution Coherence length 600 l at 4.5 mm !!! Field spatial correlation T

Highly-directional near-infrared tungsten source Laroche et al., Opt. Lett. 30, 2623 (2005) Emission pattern Theory Experiment a = 3 mm, h = 0.125 mm Fill factor 0.5 Measured emissivity at  = 4.53 m Dq = 0.9° ≈ CO2 laser Lcoh = 154 l (0.7 mm)

Angular thermal emission pattern at l = 1.55 mm Surface waves on photonic-crystal slabs Angular thermal emission pattern at l = 1.55 mm Emissivity Observation angle Ge Dq = 0.6° Lcoh = 40 l (60 mm) Laroche, Carminati, Greffet, PRL 96, 123903 (2006)

Measurement of thermal near fields : Thermal Radiation STM

Thermal radiation STM (experiments) De Wilde et al., ESPCI (Paris) HgCdTe (no filter)

Imaging surface plasmons on gold (filter,  = 10.9 m) Interferences of thermally excited plasmons (spatial coherence !) Number of fringes depends on the width of the stripe (cavity) De Wilde et al., Nature 444, 740 (2006)

Probing the LDOS of surface plasmons (filter,  = 10.9 m) De Wilde et al., Nature 444, 740 (2006)

Bardeen’s formalism in the context of STM Nature 363, 524 (1993) Tunneling current Matrix element Example : Tersoff and Hamman theory (1983) First interpretation of the STM signal

Generalized Bardeen’s formalism SNOM signal : Carminati and Saenz, Phys. Rev. Lett. 84, 5156 (2000)

Analogy between SNOM and STM A SNOM measuring thermally emitted fields would probe the LDOS Exact LDOS if point detection (+ polarization average) Carminati and Saenz, Phys. Rev. Lett. 84, 5156 (2000) Joulain, Carminati, Mulet, Greffet, Phys. Rev. B 68, 245405 (2003)

Radiative transfer at small scales

f Radiative heat transfer through a small vacuum gap T1 L T2 > T1 Radiative flux (W.m-2) Classical heat transfer (far field) : hR  5 W.m-2.K-1

Monochromatic heat-transfer coefficient AsGa - Au l = 6.2 mm, T = 300 K Near field (evanescent waves) Au L Classical value AsGa Wave effects l/100 l Mulet et al., Opt. Lett. 26, 480 (2001)

Radiative heat-transfer coefficient SiC - SiC, T = 300 K hR  1/L2 SiC Ballistic conduction in air L SiC Classical value Mulet et al., Microsc. Thermophys. Eng. 6, 209 (2002)

Spectral behavior L = 10 nm , T = 300 K SiC L SiC Quasi-monochromatic radiative heat transfer !

Near-field radiative heating of a nanoparticle SiC  1/d3 d T Sphere radius r = 5 nm The absorption increases as 1/d3 in the near field 8 orders of magnitude between d=10 mm and d=10 nm Mulet et al., Appl. Phys. Lett. 78, 2931 (2001)

Application : near-field thermophotovoltaics thermal source T= 2000 K T= 6000K thermal source T= 2000 K d << rad PV cell T= 300 K TPV cell T= 300 K TPV cell T= 300 K

Output electric power 50 3000 d TPV cell (T = 300K) T= 2000 K tungsten source quasi-monochromatic source near field :15.105 W/m2 near field : 2.5.106 W/m2 Pel (W. m-2) 50 Pel (W. m-2) 3000 far field :3.104 W/m2 BB 2000 K far field : 1.4.103 W/m2 BB 2000 K d (m) d (m) Laroche, Carminati, Greffet, J. Appl. Phys. 100, 063704 (2006)

Efficiency of a near-field TPV system T= 2000 K d TPV cell (T = 300K) quasi-monochromatic source tungsten source  (%) d (m) d (m)  (%) near field : 35% near field : 27% far field : 21 % far field : 8 % BB 2000 K BB 2000 K Laroche, Carminati, Greffet, J. Appl. Phys. 100, 063704 (2006)