1 Interferometric Interpolation and Extrapolation of Sparse OBS and SSP Data Shuqian Dong and G.T.Schuster.

Slides:



Advertisements
Similar presentations
Geological Model Depth(km) X(km) 2001 Year.
Advertisements

Utah Tomography and Modeling/Migration (UTAM) Consortium S. Brown, Chaiwoot B., W. Cao, W. Dai, S. Hanafy, G. Zhan, G. Schuster, Q. Wu, X. Wang, Y. Xue,
Adaptive Grid Reverse-Time Migration Yue Wang. Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology.
3D Super-virtual Refraction Interferometry Kai Lu King Abdullah University of Science and Technology.
Reverse Time Migration of Multiples for OBS Data Dongliang Zhang KAUST.
First Arrival Traveltime and Waveform Inversion of Refraction Data Jianming Sheng and Gerard T. Schuster University of Utah October, 2002.
Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.
Local Reverse Time Migration with VSP Green’s Functions Xiang Xiao UTAM, Univ. of Utah May 1, 2008 PhD Defense 99 pages.
Interferometric Interpolation of 3D OBS Data Weiping Cao, University of Utah Oct
Imaging Multiple Reflections with Reverse- Time Migration Yue Wang University of Utah.
SURFACE WAVE ELIMINATION BY INTERFEROMETRY AND ADAPTIVE SUBTRACTION YANWEI XUE University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Reduced-Time Migration of Converted Waves David Sheley and Gerard T. Schuster University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Primary-Only Imaging Condition Yue Wang. Outline Objective Objective POIC Methodology POIC Methodology Synthetic Data Tests Synthetic Data Tests 5-layer.
Reverse-Time Migration By A Variable Grid-Size And Time-Step Method Yue Wang University of Utah.
TARGET-ORIENTED LEAST SQUARES MIGRATION Zhiyong Jiang Geology and Geophysics Department University of Utah.
Interferometric Prediction and Least Squares Subtraction of Surface Waves Shuqian Dong and Ruiqing He University of Utah.
CROSSWELL IMAGING BY 2-D PRESTACK WAVEPATH MIGRATION
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Overview of Utah Tomography and Modeling/Migration (UTAM) Chaiwoot B., T. Crosby, G. Jiang, R. He, G. Schuster, Chaiwoot B., T. Crosby, G. Jiang, R. He,
Migration and Attenuation of Surface-Related and Interbed Multiple Reflections Zhiyong Jiang University of Utah April 21, 2006.
Kirchhoff vs Crosscorrelation
Interferometric Extraction of SSP from Passive Seismic Data Yanwei Xue Feb. 7, 2008.
Wavelet Extraction using Seismic Interferometry C. Boonyasiriwat and S. Dong November 15, 2007.
Autocorrelogram Migration of Drill-Bit Data Jianhua Yu, Lew Katz, Fred Followill, and Gerard T. Schuster.
Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah.
3-D PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
1 Fast 3D Target-Oriented Reverse Time Datuming Shuqian Dong University of Utah 2 Oct
Crosscorrelation Migration of Free-Surface Multiples in CDP Data Jianming Sheng University of Utah February, 2001.
MD + AVO Inversion Jianhua Yu, University of Utah Jianxing Hu GXT.
Virtual Source Imaging vs Interferometric Imaging Gerard T. Schuster, Andrey Bakulin and Rodney Calvert.
Interferometric Multiple Migration of UPRC Data
1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008.
4C Mahogony Data Processing and Imaging by LSMF Method Jianhua Yu and Yue Wang.
Demonstration of Super-Resolution and Super-Stacking Properties of Time Reversal Mirrors in Locating Seismic Sources Weiping Cao, Gerard T. Schuster, Ge.
Prestack Migration Deconvolution in Common Offset Domain Jianxing Hu University of Utah.
Multisource Least-squares Reverse Time Migration Wei Dai.
3D Wave-equation Interferometric Migration of VSP Free-surface Multiples Ruiqing He University of Utah Feb., 2006.
Angle-domain Wave-equation Reflection Traveltime Inversion
Seeing the Invisible with Seismic Interferometry: Datuming and Migration Gerard T. Schuster, Jianhua Yu, Xiao Xiang and Jianming Sheng University of Utah.
1 OBS->OBS Extrapolation Interferometry Shuqian Dong and Sherif Hanafy Coarse OBS Virtual SWP.
Impact of MD on AVO Inversion
1 Local Reverse Time Migration: Salt Flank Imaging by PS Waves Xiang Xiao and Scott Leaney 1 1 Schlumberger UTAM, Univ. of Utah Feb. 8, 2008.
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Velocity Estimation of Friendswood’s Weathering Zone using Fermat’s Interferometric Principle By Chaiwoot Boonyasiriwat University of Utah.
Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy Weiping Cao Gerard T. Schuster October 2009.
Reverse Time Migration of Prism Waves for Salt Flank Delineation
Fast Least Squares Migration with a Deblurring Filter Naoshi Aoki Feb. 5,
Annual Meeting Utah Tomography and Modeling/Migration (UTAM) Feb. 5-6, 2009 N. Aoki, C. Boonyasiriwat, S. Brown, W. Cao, W. Dai, N. Aoki, C. Boonyasiriwat,
LEAST SQUARES DATUMING AND SURFACE WAVES PREDICTION WITH INTERFEROMETRY Yanwei Xue Department of Geology & Geophysics University of Utah 1.
Super-virtual Interferometric Diffractions as Guide Stars Wei Dai 1, Tong Fei 2, Yi Luo 2 and Gerard T. Schuster 1 1 KAUST 2 Saudi Aramco Feb 9, 2012.
Interferometric Traveltime Tomography M. Zhou & G.T. Schuster Geology and Geophysics Department University of Utah.
Wave-Equation Waveform Inversion for Crosswell Data M. Zhou and Yue Wang Geology and Geophysics Department University of Utah.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
Hydro-frac Source Estimation by Time Reversal Mirrors Weiping Cao and Chaiwoot Boonyasiriwat Feb 7, 2008.
1.1 Seismic Interferometry Optical interferometry.
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
The Earth’s Near Surface as a Vibroseis Signal Generator Zhiyong Jiang University of Utah.
Shuqian Dong and Sherif M. Hanafy February 2009 Interpolation and Extrapolation of 2D OBS Data Using Interferometry.
Interpolating and Extrapolating Marine Data with Interferometry
Primary-Only Imaging Condition And Interferometric Migration
4C Mahogony Data Processing and Imaging by LSMF Method
Skeletonized Wave-Equation Surface Wave Dispersion (WD) Inversion
Interferometric Least Squares Migration
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Super-virtual Refraction Interferometry: Theory
LSMF for Suppressing Multiples
Wave Equation Dispersion Inversion of Guided P-Waves (WDG)
Presentation transcript:

1 Interferometric Interpolation and Extrapolation of Sparse OBS and SSP Data Shuqian Dong and G.T.Schuster

2 Outline Motivation Motivation Theory Theory Conclusions Conclusions Numerical Tests Numerical Tests OBS interpolation OBS interpolation OBS extrapolation OBS extrapolation SSP extrapolation SSP extrapolation

3 Outline Motivation Motivation Theory Theory Conclusions Conclusions Numerical Tests Numerical Tests OBS interpolation OBS interpolation OBS extrapolation OBS extrapolation SSP extrapolation SSP extrapolation

4 MotivationAnswer: Interfer. predict. + matching filter Questions: We have: Sparse OBS ? Narrow aperture OBS ? Wide aperture OBS Narrow aperture SSP ? Wide aperture SSP SSP: Interferometric transform VSP Narrow aperture wide aperture

5 Seabed Reflectors Seabed Reflectors Seabed Reflectors OBS SWP OBS B A x B A x B A x Theory Sparse OBS interferometric interpolation Sparse OBS interferometric interpolation Natural Green’s Function Model based Green’s Function Interpolated data

6 Z (km) 03.0 X (km) Density model Z (km) 03.0 X (km) Velocity model km/s kg/m3 Sparse OBS Interpolation

7 Z (km) 03.0 X (km) Density model Z (km) 03.0 X (km) Velocity model km/s kg/m3 Sparse OBS Interpolation 300 shots dx = 16 m 600 receivers dx = 8 m

8 X (km) Time (s) 03.0 Original CSG Sparse OBS Interpolation Time (s) X (km) Virtual CSG dx = 80 m Total traces: 60 dx = 8 m

9 X (km) Time (s) 03.0 Original CSG Sparse OBS Interpolation Time (s) X (km) Virtual CSG dx = 80 m Total traces: 60 dx = 8 m * f (t,x ) d real d virtual0 0 0 x0 x0 * f d (t,x’ ) real d (t,x’)virtual0

10 Sparse OBS Interpolation Time (s) X (km) Virtual CSG Time (s) X (km) Real CSG Time (s) X (km) Filtered virtual CSG

11 X (km) Time (s) 03.0 Original CSG X (km) Time (s) 03.0 Virtual CSG X (km) Time (s) 03.0 Real CSG X (km) 04.5 Time (s) 03.0 Filtered virtual CSG dx = 160 m Total traces: 30 dx = 8 m Total traces: 600 dx = 8 m Total traces: 600 dx = 8 m Total traces: 600 Sparse OBS Interpolation

12 X (km) Time (s) 03.0 Original CSG X (km) Time (s) 03.0 Virtual CSG X (km) Time (s) 03.0 Real CSG X (km) 04.5 Time (s) 03.0 Filtered virtual CSG dx = 320 m Total traces: 30 dx = 8 m Total traces: 600 dx = 8 m Total traces: 600 dx = 8 m Total traces: 600 Sparse OBS Interpolation

13 Migration of interpolated OBS data Z (km) Migration of sparse OBS data X (km) Z (km) X (km) shots dx = 16 m 6 receivers dx = 800 m Sparse OBS Interpolation

14 SIGSBEE 2B velocity model X (km) Z (km) Sparse OBS Interpolation

15 Velocity model Z (km) 04.5 X (km) shots dx = 30 m 800 receivers dx = 7.62 m Sparse OBS Interpolation

16 X (km) 06.0 Time (s) 03.0 Original CSG X (km) 06.0 Time (s) 03.0 Virtual CSG X (km) 06.0 Time (s) 03.0 Real CSG X (km) 06.0 Time (s) 03.0 Filtered virtual CSG dx = 76.2 m traces: 80 dx = 7.62 m traces: 800 dx = 7.62 m traces: 800 dx = 7.62 m traces: 800 Sparse OBS Interpolation

17 X (km) 06.0 Time (s) 03.0 Original CSG X (km) 06.0 Time (s) 03.0 Virtual CSG X (km) 06.0 Time (s) 03.0 Real CSG X (km) 06.0 Time (s) 03.0 Filtered virtual CSG dx = 300 m traces: 20 dx = 7.62 m traces: 800 dx = 7.62 m traces: 800 dx = 7.62 m traces: 800 Sparse OBS Interpolation

18 Z (km) 04.5 X (km) 06.0 Migration of sparse OBS data 20 receivers dx =300 m 200 shots dx = 30 m Sparse OBS Interpolation

19 Migration of interpolated OBS data Z (km) 04.5 X (km) 06.0

20 Z (km) 04.5 X (km) 06.0 Velocity model Velocity model

21 Outline Motivation Motivation Theory Theory Conclusions Conclusions Numerical Tests Numerical Tests OBS interpolation OBS interpolation OBS extrapolation OBS extrapolation SSP extrapolation SSP extrapolation

22 Seabed Reflectors Seabed Reflectors Seabed Reflectors OBS SWP OBS B A x B A x B A x Natural Green’s Function Model based Green’s Function Etrapolated data OBS Extrapolation

23 SIGSBEE 2B velocity model X (km) Z (km) OBS Extrapolation 200 shots dx = 30 m 400 receivers apertue: 3 km dx = 7.62 m

24 OBS Extrapolation Time (s) X (km) 06.0 Original CSG Time (s) X (km) 06.0 Extrapolated CSG Time (s) X (km) 06.0 Real CSG

25 Migration of narrow aperture OBS data Z (km) 04.5 X (km) 06.0 OBS Extrapolation 200 shots dx = 30 m 400 receivers apertue: 3 km dx = 7.62 m

26 Migration of extrapolated OBS data Z (km) 04.5 X (km) 06.0 OBS Extrapolation

27 Velocity model Velocity model Z (km) 04.5 X (km) 06.0 OBS Extrapolation

28 Outline Motivation Motivation Theory Theory Conclusions Conclusions Numerical Tests Numerical Tests OBS interpolation OBS interpolation OBS extrapolation OBS extrapolation SSP extrapolation SSP extrapolation

29 Seabed Reflectors SSP BA x Seabed Reflectors BA x Seabed Reflectors BA x Natural Green’s Function Model based Green’s Function Etrapolated data Natural or SSP Extrapolation

30 SIGSBEE 2B velocity model Z (km) 04.5 X (km) 06.0 SSP Extrapolation 200 shots dx = 30 m 300 receivers apertue: 2.4 km dx = 7.62 m

31 Time (s) X (km) 06.0 Original CSG Time (s) X (km) 06.0 Extrapolated CSG Time (s) X (km) 06.0 Real CSG SSP Extrapolation

32 Migration of extrapolated SSP data Z (km) 04.5 X (km) 06.0 SSP Extrapolation 200 shots dx = 30 m 300 receivers apertue: 2.4 km dx = 7.62 m

33 Migration of extrapolated SSP data Z (km) 04.5 X (km) 06.0 SSP Extrapolation

34 Velocity model Velocity model Z (km) 04.5 X (km) 06.0 SSP Extrapolation

35 Future Work Field data test. 3D test Conclusion Helpful for OBS and SSP survey design Sparse OBS Narrow aperture Wide aperture

36 We thank Utah Tomography and Modeling/Migration Consortium sponsors for their financial support Acknowledgements

37 Thanks