Deployment and Evaluation of an Observations Data Model Jeffery S Horsburgh David G Tarboton Ilya Zaslavsky David R. Maidment David Valentine

Slides:



Advertisements
Similar presentations
CUAHSI Observations Data Model A relational database stored in Access, PostgreSQL, SQLServer, …. Stores observation data made at points Access data through.
Advertisements

Some notes on CyberGIS in hydrology Ilya Zaslavsky Spatial Information Systems Lab San Diego Supercomputer Center UCSD TeraGrid CyberGIS Workshop, February.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
How to share and publish your data using HIS David G Tarboton Jeff Horsburgh Ilya Zaslavsky Tom Whitenack David Valentine Support EAR
The CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data
Sharing Hydrologic Data with the CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David.
This work is funded by the Inland Northwest Research Alliance INRA Constellation of Experimental Watersheds: Cyberinfrastructure to Support Publication.
ICEWATER: INRA Constellation of Experimental Watersheds Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S. Horsburgh, Utah State.
A Community Data Model for Hydrologic Observations Observations Data Model Schema ODM Data Source and Network SitesVariables ValuesMetadata Depth of snow.
Hydrologic Data and Modeling: Towards Hydrologic Information Science David R. Maidment Center for Research in Water Resources University of Texas at Austin.
Development of a Community Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David Maidment (PI),
Development of a Community Hydrologic Information System David G Tarboton Jeffery S Horsburgh, David R. Maidment (PI), Tim Whiteaker, Ilya Zaslavsky, Michael.
Linking HIS and GIS How to support the objective, transparent and robust calculation and publication of SWSI? Jeffery S. Horsburgh CUAHSI HIS Sharing hydrologic.
This work is funded by National Science Foundation Grant EAR Accessing and Sharing Data Using the CUAHSI Hydrologic Information System CUAHSI HIS.
CUAHSI HIS Data Services Project David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin (HIS Project Leader)
Components of an Integrated Environmental Observatory Information System Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S.
This work was funded by the U.S. National Science Foundation under grant EAR Any opinions, findings and conclusions or recommendations expressed.
The HydroServer Platform for Sharing Hydrologic Data Support EAR CUAHSI HIS Sharing hydrologic data David G Tarboton, Jeffery.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
Development of a Community Hydrologic Information System Jeffery S. Horsburgh Utah State University David G. Tarboton Utah State University.
Two NSF Data Services Projects Rick Hooper, President Consortium of Universities for the Advancement of Hydrologic Science, Inc.
Using GIS in Creating an End-to- End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
Integrating Historical and Realtime Monitoring Data into an Internet Based Watershed Information System for the Bear River Basin Jeff Horsburgh David Stevens,
Introducing the CUAHSI Hydrologic Information System Desktop Application (HydroDesktop) and Open Development Community Jiří Kadlec, Daniel Ames, Teva Velupillai.
HIS Team and Collaborators University of Texas at Austin – David Maidment, Tim Whiteaker, Ernest To, Bryan Enslein, Kate Marney San Diego Supercomputer.
GIS at SDSC Domains: –From geology, environmental science, hydrology, ocean biodiversity, regional development, Katrina response, archaeology, to neuroscience.
SAN DIEGO SUPERCOMPUTER CENTER Developing a CUAHSI HIS Data Node, as part of Cyberinfrastructure for the Hydrologic Sciences David Valentine Ilya Zaslavsky.
An End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David K. Stevens, David G. Tarboton, Nancy O. Mesner, Amber Spackman.
Tools for Publishing Environmental Observations on the Internet Justin Berger, Undergraduate Researcher Jeff Horsburgh, Faculty Mentor David Tarboton,
Using HydroServer Organize, Manage, and Publish Your Data Support EAR CUAHSI HIS Sharing hydrologic data Jeffery S. Horsburgh.
Setting up a HydroServer Support EAR CUAHSI HIS Sharing hydrologic data Jeffery S. Horsburgh David G. Tarboton, Kimberly.
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
Ocean Sciences What is CUAHSI? CUAHSI – Consortium of Universities for the Advancement of Hydrologic Science, Inc Formed in 2001 as a legal entity Program.
Information Requirements for Integrating Spatially Discrete, Feature- Based Earth Observations Jeffery S. Horsburgh Anthony Aufdenkampe, Kerstin Lehnert,
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
SAN DIEGO SUPERCOMPUTER CENTER, UCSD SciR&D Hydrologic Information System Services Architecture Collaborative project: UTAustin (D. R. Maidment) + SDSC.
Exercises: Organizing, Loading, and Managing Point Observations Using HydroServer Support EAR CUAHSI HIS Sharing hydrologic data
Data Interoperability in the Hydrologic Sciences The CUAHSI Hydrologic Information System David Tarboton, David Maidment, Ilya Zaslavsky, Dan Ames, Jon.
CUAHSI Hydrologic Information System an introduction Ilya Zaslavsky Director, Spatial Information Systems Lab San Diego Supercomputer Center University.
Advancing an Information Model for Environmental Observations Jeffery S. Horsburgh Anthony Aufdenkampe, Richard P. Hooper, Kerstin Lehnert, Kim Schreuders,
Publishing Observations Data: from ODM to HIS Central.
Hydrologic Information System for the Nation I. Zaslavsky (SDSC) & The CUAHSI HIS Project his.cuahsi.org, hiscentral.cuahsi.org.
CUAHSI, WATERS and HIS by Richard P. Hooper, David G. Tarboton and David R. Maidment.
Overview of CUAHSI HIS Version 1.1 David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin CUAHSI Biennial Science.
CBEO:N Chesapeake Bay Environmental Observatory as a Network Node About CBEO The mission of the CBEO project is development of a Chesapeake Bay Environmental.
The CUAHSI Community Hydrologic Information System Jeffery S. Horsburgh Utah Water Research Laboratory Utah State University CUAHSI HIS Sharing hydrologic.
Bringing Water Data Together David R. Maidment Center for Research in Water Resources University of Texas at Austin Texas Water Summit San Antonio Tx,
CUAHSI HIS Features of Observations Data Model. NWIS ArcGIS Excel NCAR Trends NAWQA Storet NCDC Ameriflux Matlab AccessSAS Fortran Visual Basic C/C++
Abstract Analysis and Visualization of Hydrologic Data and Observations Catalogs Using the OLAP Data Cube Technology Ilya Zaslavsky a, Matthew Rodriguez.
CUAHSI Hydrologic Information Systems David R. Maidment and Ernest To Center for Research in Water Resources, University of Texas at Austin Hydrosystems.
Lecture 4 Data Models Jeffery S. Horsburgh Hydroinformatics Fall 2012 This work was funded by National Science Foundation Grant EPS
The CUAHSI Observations Data Model Jeff Horsburgh David Maidment, David Tarboton, Ilya Zaslavsky, Michael Piasecki, Jon Goodall, David Valentine,
CUAHSI HIS: Science Challenges Linking small integrated research sites (
1 CUAHSI Web Services and Hydrologic Information Systems By David R. Maidment, University of Texas at Austin Collaborators: Ilya Zaslavsky and Reza Wahadj,
Hydroinformatics Lecture 15: HydroServer and HydroServer Lite The CUAHSI HIS is Supported by NSF Grant# EAR CUAHSI HIS Sharing hydrologic data.
The Bear River Watershed Information System Jeffery S. Horsburgh Utah Water Research Laboratory Utah State University David.
Developing a community hydrologic information system David G Tarboton David R. Maidment (PI) Ilya Zaslavsky Michael Piasecki Jon Goodall
The CUAHSI Hydrologic Information System Spatial Data Publication Platform David Tarboton, Jeff Horsburgh, David Maidment, Dan Ames, Jon Goodall, Richard.
Hydroinformatics Lecture: HydroServer .NET/PHP
Using GIS in Creating an End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
Using an Observations Data Model in Hydrologic Information Systems
The CUAHSI Community Hydrologic Information System
Developing a Community Hydrologic Information System
Sharing Hydrologic Data with the CUAHSI* Hydrologic Information System
The CUAHSI Hydrologic Information System and NHD Plus A Services Oriented Architecture for Water Resources Data David G Tarboton David R. Maidment (PI)
The CUAHSI Hydrologic Information System Service Oriented Architecture for Water Resources CUAHSI HIS Sharing hydrologic data Support.
Lecture 8 Database Implementation
CUAHSI HIS Sharing hydrologic data
Hydroinformatics Lecture 15: HydroServer (and HydroServer Lite)
David Tarboton, Dan Ames, Jeffery S. Horsburgh, Jon Goodall
Presentation transcript:

Deployment and Evaluation of an Observations Data Model Jeffery S Horsburgh David G Tarboton Ilya Zaslavsky David R. Maidment David Valentine Support EAR

WaterOneFlow Web Services Data accessthrough web services Data storage through web services Downloads Uploads Observatory data servers CUAHSI HIS data servers 3 rd party data servers e.g. USGS, NCDC GIS Matlab IDL Splus, R Excel Programming (Fortran, C, VB) Web services interface Data Access System for Hydrology (DASH) Website Portal and Map Viewer Information input, display, query and output services Preliminary data exploration and discovery. See what is available and perform exploratory analyses HTML -XML WSDL - SOAP ODM

CUAHSI Observations Data Model A relational database at the single observation level (atomic model) Stores observation data made at points Metadata for unambiguous interpretation Traceable heritage from raw measurements to usable information Standard format for data sharing Cross dimension retrieval and analysis Streamflow Flux tower data Precipitation & Climate Groundwater levels Water Quality Soil moisture data

CUAHSI Observations Data Model

Discharge, Stage, Concentration and Daily Average Example

Stage and Streamflow Example

ODM Implementation in WATERS Network Information System 11 WATERS Network test bed projects 16 ODM networks (some test beds have more than one network) Data from 1246 sites, of these, 167 sites are operated by WATERS investigators National Hydrologic Information Server San Diego Supercomputer Center

Florida – Santa Fe Watershed Nitrate Nitrogen (mg/L) Millpond Spring PI: Wendy Graham, ….; DM: Kathleen McKee, Mark Newman

Utah – Little Bear River and Mud Lake Turbidity Continuous turbidity observations at the Little Bear River at Mendon Road from two different turbidity sensors.

Managing Data Within ODM - ODM Tools Load – import existing data directly to ODM Query and export – export data series and metadata Visualize – plot and summarize data series Edit – delete, modify, adjust, interpolate, average, etc.

Methods for Data Loading SQL Server Integration Services Interactive Data Loader Scheduled Data Loader

Direct analysis from your favorite analysis environment. e.g. Matlab % create NWIS Class and an instance of the class createClassFromWsdl(' /NWIS/DailyValues.asmx?WSDL'); WS = NWISDailyValues; % GetValues to get the data siteid='NWIS: '; bdate=' T00:00:00'; edate=' T00:00:00'; variable='NWIS:00060'; valuesxml=GetValues(WS,siteid,variable,bdate,edate,'');

Summary Syntactic heterogeneity (File types and formats) Semantic heterogeneity –Language for observation attributes –Language to encode observation attribute values A national network of consistent data Enhanced data availability Metadata to facilitate unambiguous interpretation Enhanced analysis capability

Future Considerations Additional data types (grid, image etc.) Additional catalog sets to enhance discovery Unit standardization and conversion Ownership, security, authentication, provenance Improve controlled vocabulary constraints to enhance integrity

Databases: Structured data sets to facilitate data integrity and effective sharing and analysis. - Standards - Metadata - Unambiguous interpretation Analysis: Tools to provide windows into the database to support visualization, queries, analysis, and data driven discovery. Models: Numerical implementations of hydrologic theory to integrate process understanding, test hypotheses and provide hydrologic forecasts. Advancement of water science is critically dependent on integration of water information Databases Analysis Models ODM Web Services

HIS Website Project Team – Introduces members of the HIS Team Data Access System for Hydrology – Web map interface supporting data discovery and retrieval Prototype Web Services – WaterOneFlow web services facilitating downlad of time series data from numerous national repositories of hydrologic data Observations Data Model – Relational database schema for hydrologic observations HIS Tools – Links to end-user applications developed to support HIS Documentation and Reports – Status reports, specifications, workbooks and links related to HIS Feedback – Let us know what you think Austin Workshop – Material from WATERS workshop in Austin