W. Udo Schröder, 2005 Rotational Spectroscopy 1
W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus
W. Udo Schröder, 2005 Rotational Spectroscopy 3 Rotational Wave Functions I 3 due to intrinsic s.p. spins = independent d.o.f. M
W. Udo Schröder, 2005 Rotational Spectroscopy 4 Example Wave Functions
W. Udo Schröder, 2005 Rotational Spectroscopy 5 R Invariance of Axially Symmetric Nuclei M 3 2 Construct symmetric total wave function: “signature” s=(-1) I+K
W. Udo Schröder, 2005 Rotational Spectroscopy 6 Example: Rot Spectrum 238 U Even-I sequence I=0 +, 2 +, 4 +,… Effect of rotation on nucleonic motion even for Q 0 = const. E. Grosse et al., Phys. Scripta 24, 71 (1977) E2
W. Udo Schröder, 2005 Rotational Spectroscopy 7 K Bands in 168 Er Bohr & Mottelson, Nucl. Struct. II Different intrinsic spins (K) and parities (r) Mainly E2 transitions within bands K forbiddenness
W. Udo Schröder, 2005 Rotational Spectroscopy 8 “Back Bending” Bohr & Mottelson, J. Phys. Soc. Japan 44, Suppl. 157 (1977) ground state band excited state band At high spins break up of J=0 pair, reduction of moment of inertia .
W. Udo Schröder, 2005 Rotational Spectroscopy 9 Super Deformation 152 Dy Twin et al., 1986, ARNS 38 (1988) 108 Pd( 48 Ca, xn) 156-xn Dy* Wood et al., Phys. Rep. 215, 101 (1992) SD band: 19 transitions I≤ 60 E ≈ 47 keV large Q 0 = 19 eb BE2 = 2660 s.p.(W.u.) highly collective
W. Udo Schröder, 2005 Rotational Spectroscopy 10 Deformation Energy Surfaces Tri-axial nuclear shapes: semi axes
W. Udo Schröder, 2005 Rotational Spectroscopy 11 Angular Distribution of Symmetry Axis