CMOS Technology Characterization for Analog and RF Design Author : Behzad Razavi Presenter : Kyungjin Yoo
Index Introduction Motivation and Issues Characterization for analog design Characterization for RF design
I.Introduction CMOS: inadequate for analog and RF design? Limited active, passive devices Optimized technology for digital design Poor characterization and modeling Sophisticated set of characteristics speed, noise, linearity, loss, matching, and dc characteristics Technology characterization methods
II.Motivation and Issues Tradeoff difference digital CMOS technology vs. analog circuits speed power dissipation
II.Motivation and Issues Need for analog characterization Inaccurate modeling, lack of modeling Rapid migration of digital circuits Difficulties Various systems Difficult to measure Difficult to incorporate in simulations Time and effort Modification for next generation
III.Characterization for analog design DC Behavior AC Behavior Linearity Matching Temperature Dependent Noise
A.DC Behavior Have measured I-V data points Subthreshold characteristics of MOSFET Output resistance of short-channel MOS transistors
B.AC Behavior device level and must be measured under bias conditions Nonlinearity of MOS gate-channel capacitance Capacitance of the n-well to the substrate circuit level Frequently used building blocks as test vehicles (e.g. ring oscillators) Voltage comparator for intrinsic speed of the technology
C.Linearity Passive devices . Coefficients must be measured Active devices Minimize the nonlinearity by adequate open-loop gain Quantify the overall nonlinearity using Fig.10
D.Matching
E.Temperature Dependence Basic device parameters Output resistance, subthreshold conduction, capacitance Other quantities Transconductance, on-resistance, threshold voltage, ac properties DC and AC temperature dependencies of devices must be measured and incorporated in simulations
IV.Characterization for RF design Device Properties Noise Circuit Properties
A.Device Properties Limit active devices, More passive monolithic devices Inductors - measured data for parameters Varactors Transformers
B.Noise Thermal noise of submicrometer MOS transistor long-channel approximation Capacitive coupling of the drain noise current to the gate Modulation of the threshold voltage by the body thermal noise 1/f noise of MOSFET’s Values to be measured are too small to be sensed
C.Circuit Properties Dependent on Overall transceiver architecture Intended wireless standard Issues in today’s RF CMOS design Variability of device and circuit parameters with process and temperature Matching properties Frequency divider Power Amplifiers
Thank you ! Q & A