1 CALICE D4 simulation results G.Villani feb. 06 Cell size: 25 x 25  m 2 Epitaxial thickness: 20  m Diode location: S4 Diode size: 1.5 x 1.5  m 2 Cell.

Slides:



Advertisements
Similar presentations
1 RTS effect on fake hit rate in Mimostar3 Xiangming Sun L. Greiner, M. Szelezniak H. Matis T. Stezelberger C. Vu H. Wieman Lawrence Berkeley National.
Advertisements

1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /
GLAST LAT ProjectIA Workshop 6 – Feb28,2006 Preliminary Studies on the dependence of Arrival Time distributions in the LAT using CAL Low Energy Trigger.
28 Feb 2006Digi - Paul Dauncey1 In principle change from simulation output to “raw” information equivalent to that seen in real data Not “reconstruction”,
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell 16 μm x 16 μm P-well 17 μm x 17 μm Collecting diodes 3.6 μm x 3.6 μm Bias: NWell 3.5V Diodes:
A first look at the digital approach Vishnu V. Zutshi NIU/NICADD.
30 March Global Mice Particle Identification Steve Kahn 30 March 2004 Mice Collaboration Meeting.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
G.Villani march 071 CALICE pixel Deep P-Well results Nwells P-well 3μm guard ring Diodes [3.6,1.8,0.9] x[3.6,1.8,0.9]μm 2 Bias: NWell 1.8/1V Diodes: 1.5V.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
November 30th, 2006MAPS meeting - Anne-Marie Magnan - Imperial College London 1 MAPS simulation Application of charge diffusion on Geant4 simulation and.
Some Comments on the Intra-tower Alignment Leon R. A&C Mtg, June 20, 2005.
February 8th, 2007Anne-Marie Magnan - Imperial College London 1 Update on clusterisation studies for MAPS Comparison between 2 methods of clustering Geant4/LCIO.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
TeraPixel APS for CALICE Progress meeting 9th Dec 2005 Jamie Crooks, Microelectronics/RAL.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
Simultaneous Rate and Power Control in Multirate Multimedia CDMA Systems By: Sunil Kandukuri and Stephen Boyd.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
f has a saddle point at (1,1) 2.f has a local minimum at.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Semiconductor detectors
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Test ISIS1 P-well device on board V1.4 RAL Z. Zhang & K. Stefanov.
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
Ooo Performance simulation studies of a realistic model of the CBM Silicon Tracking System Silicon Tracking for CBM Reconstructed URQMD event: central.
3D-FBK pixel sensors with CMS readout: first tests results M. Obertino, A. Solano, A. Vilela Pereira, E. Alagoz, J. Andresen, K. Arndt, G. Bolla, D. Bortoletto,
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
NA62 Gigatracker Working Group 28 July 2009 Massimiliano Fiorini CERN.
1 SCT Lorentz angle & Cluster Width Simulations From first principles Guang Hao Low (Summer Student) In consultation with Steve McMahon, Shaun Roe, Taka.
Positional and Angular Resolution of the CALICE Pre-Prototype ECAL Hakan Yilmaz.
Tests of spectrometer screens Introduction Layout Procedure Results Conclusions L. Deacon, B. Biskup, S. Mazzoni, M.Wing et. al. AWAKE collaboration meeting,
Performance simulations with a realistic model of the CBM Silicon Tracking System Silicon tracking for CBM Number of integration components Ladders106.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Matched Filtering as a Separation Tool – review example In any map of total magnetic intensity, various sources contribute components spread across the.
STS Radiation Environment 11 th CBM Collaboration Meeting GSI, February 2008 Radoslaw Karabowicz GSI.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
D 0 reconstruction: 15 AGeV – 25 AGeV – 35 AGeV M.Deveaux, C.Dritsa, F.Rami IPHC Strasbourg / GSI Darmstadt Outline Motivation Simulation Tools Results.
1 Oct 2009Paul Dauncey1 Status of 2D efficiency study Paul Dauncey.
Tera-Pixel APS for CALICE Progress meeting, 6 th June 2006 Jamie Crooks, Microelectronics/RAL.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
4 Jun 2008Paul Dauncey1 Crosstalk and laser results Paul Dauncey, Anne-Marie Magnan, Matt Noy.
The Prototype Simulation of SDHCAL Ran.Han Gerald.Grenier Muriel.Donckt IPNL.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
10/25/2007Nick Sinev, ALCPG07, FNAL, October Simulation of charge collection in chronopixel device Nick Sinev, University of Oregon.
G.Villani Aug. 071 CALICE pixel Laser testing update Laser MIP equivalent calibration update Si detector coupled to low noise CA + differentiator (no shaper)
Konstantin Stefanov 05/10/ Detecting elements for the CALICE MAPS design How does the collected charge depend on 1.Diode size? 2.Diode position with.
Measurement the Higgs mass via the channel: e + e - → Z H → e + e - + X & Analog vs. Digital Energy Reconstruction in the Si-W ECal Youssef KHOULAKI ILCP.
1 An X-ray fluorescence spectrometer using CMOS-sensors AD AD vanced MO MO nolithic S S ensors for Supported by BMBF (06FY9099I and 06FY7113I), HIC for.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
Physics performance of a DHCAL with various absorber materials Jan BLAHA CALICE Meeting, 16 – 18 Sep. 2009, Lyon, France.
IPHC, Strasbourg / GSI, Darmstadt
Rint Simulations & Comparison with Measurements
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Simple charge diffusion model
Hadronic Shower Structure in WHCAL Prototype
Detecting elements for the CALICE MAPS design
Atlantis and the Inner Detector
Charge diffusion model (again)
X y y = x2 - 3x Solutions of y = x2 - 3x y x –1 5 –2 –3 6 y = x2-3x.
Beam Test Results for the CMS Forward Pixel Detector
Experimental Investigation of the Photoelectric effect
CALICE simulation results G.Villani 06
EMC Simulation Studies SuperB Collaboration Workshop LNF 1/12/2009
Presentation transcript:

1 CALICE D4 simulation results G.Villani feb. 06 Cell size: 25 x 25  m 2 Epitaxial thickness: 20  m Diode location: S4 Diode size: 1.5 x 1.5  m 2 Cell 2Cell 3 Cell 4 Cell 5 Cell 6 Cell 9 Cell 8 Cell Cell 1 Diode bias: 2VPWell bias: 0V Substrate bias: floating 10 hits simulated: mirroring over central cell and transformation over 3 x 3 cells allows surface reconstruction of Q coll (x,y) Cell := enclosing of 4 diodes whose Charge add (as in cell 5)

2 CALICE D4 simulation results G.Villani feb. 06 thickness singlemulti 15  m 20  m

3 Surface Q coll (x,y) Normalized surface Q coll (x,y) vs. max(Qcoll(x,y)) CALICE D4 simulation results G.Villani feb Single diode Q coll (x,y) hit 1 Sum diode Q coll (x,y) hit 1 Epitaxial thickness: 20 μm Q coll (x,y) = 1092

4 Contour plot of cell charge at different % of total collected charge 20% 40% 60% 80% Increasing number of threshold levels reduces spatial error Minimum error around ≈ 57 % ( need further analysis) Normalized surface Q coll (x,y) vs. max(Qcoll(x,y)) CALICE D4 simulation results G.Villani feb. 06 Epitaxial thickness: 20 μm

5 Surface Q coll (x,y) Normalized surface Q coll (x,y) vs. max(Qcoll(x,y)) CALICE D4 simulation results G.Villani feb Single diode Q coll (x,y) hit 1 Sum diode Q coll (x,y) hit 1 Epitaxial thickness: 15 μm Surface Q coll (x,y) Q coll (x,y) = 1122

6 Contour plot of cell charge at different % of total collected charge 20% 40% 60% 80% Increasing number of threshold levels reduces spatial error Minimum error around ≈ 57 % ( need further analysis) Normalized surface Q coll (x,y) vs. max(Qcoll(x,y)) CALICE D4 simulation results G.Villani feb. 06 Epitaxial thickness: 15 μm

7 Maximum signal around e - when Σ Effect of spread of charge can be limited by increasing number of levels threshold Is there an ‘optimum’ thickness of epitaxial layer ? Conclusions CALICE D4 simulation results G.Villani feb. 06

8 Collection with different thicknesses 15 μm 20 μm