University of Minnesota

Slides:



Advertisements
Similar presentations
QMM 384 – Data Mining Data Mining: Introduction Introduction to Predictive Analytics.
Advertisements

CPS : Information Management and Mining Shivnath Babu.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Introduction to Data Mining by Tan, Steinbach, Kumar.
DATA MINING Introductory
Data Mining Sangeeta Devadiga CS 157B, Spring 2007.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
Data Mining: Introduction
Week 9 Data Mining System (Knowledge Data Discovery)
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
© Vipin Kumar CSci 8980 (Data Mining) Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Decision Support: Data Mining Introduction.
Data Mining: Introduction
Data Mining – Intro.
Data Mining Course Overview. About the course – Administrivia Instructor: George Kollios, MCS 288, Mon 2:30-4:00PM.
Why Mine Data? Commercial Viewpoint
Data Mining and Business Intelligence
Knowledge Discovery & Data Mining process of extracting previously unknown, valid, and actionable (understandable) information from large databases Data.
Chapter 5: Data Mining for Business Intelligence
MAKING THE BUSINESS BETTER Presented By Mohammed Dwikat DATA MINING Presented to Faculty of IT MIS Department An Najah National University.
Tang: Introduction to Data Mining (with modification by Ch. Eick) I: Introduction to Data Mining A.Short Preview 1.Initial Definition of Data Mining 2.Motivation.
Data Mining CS157B Fall 04 Professor Lee By Yanhua Xue.
Knowledge Discovery and Data Mining Evgueni Smirnov.
Knowledge Discovery and Data Mining Evgueni Smirnov.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
Data Mining – Intro. Course Overview Spatial Databases Temporal and Spatio-Temporal Databases Multimedia Databases Data Mining.
CSE4334/5334 DATA MINING CSE 4334/5334 Data Mining, Fall 2011 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
1 Data Mining: Introduction Chapter 1 of Introduction to Data Mining by Tan, Steinbach, Kumar.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Minqi.
Introduction to Data Mining Jinze Liu April 8 th, 2009.
Christoph Eick Introduction to Data Mining 8/19/ Dr. Eick 2. COSC.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
COMSATS Institute of Information Technology Department of Computer Science Databases and Information Systems Dr. Ramzan Talib Databases and Information.
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
CLUSTERING PARTITIONING METHODS Elsayed Hemayed Data Mining Course.
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
Introduction to Data Mining Mining Association Rules Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
CS570: Data Mining Spring 2010, TT 1 – 2:15pm Li Xiong.
GROUP 6 KIIZA FELIX 2013/BIT/110 MUHANGUZI EUSTUS 2013/BIT/104/PS TUGIROKWIKIRIZA FLAVIA 2013/BIT/111/PS HAMSTONE NATOSHA 2013/BIT/122/PS GILBERT MUMBERE.
DATA MINING and VISUALIZATION Instructor: Dr. Matthew Iklé, Adams State University Remote Instructor: Dr. Hong Liu, Embry-Riddle Aeronautical University.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Lecture Notes for Chapter 1 Introduction to Data Mining.
Data Mining: Introduction
Data Mining Introduction
Data Mining: Introduction
Data Mining: Introduction
Introduction to Data Mining Part 1 Knowledge Sources COSC 6335 Webpage
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Introduction Lecture Notes for Chapter 1 Introduction to Data Mining by Tan,
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Sangeeta Devadiga CS 157B, Spring 2007
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Data Mining: Introduction
Presentation transcript:

University of Minnesota CSCI 5707: Data Mining Pusheng Zhang University of Minnesota Email: pusheng@cs.umn.edu Apr 29, 2004

Why Mine Data? Commercial Viewpoint Scientific Viewpoint

Data Mining Tasks Predictive Methods Descriptive Methods Use some variables to predict unknown or future values of other variables. Descriptive Methods Find human-interpretable patterns that describe the data.

Major Data Mining Tasks Association Rule Discovery [Descriptive] Classification [Predictive] Clustering [Descriptive] Deviation Detection [Predictive]

Clustering Definition Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that Data points in one cluster are more similar to one another. Data points in separate clusters are less similar to one another. Similarity Measures: E.g., Euclidean Distance

Illustrating Clustering Euclidean Distance Based Clustering in 3-D space.

Clustering: Application 1 Market Segmentation: Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix. Approach: Collect different attributes of customers based on their geographical and lifestyle related information. Find clusters of similar customers. Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2 Document Clustering: Goal: To find groups of documents that are similar to each other based on the important terms appearing in them. Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster. Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.

Illustrating Document Clustering Clustering Points: 3204 Articles of Los Angeles Times. Similarity Measure: How many words are common in these documents (after some word filtering).

Clustering of S&P 500 Stock Data Observe Stock Movements every day. Clustering points: Stock-{UP/DOWN} Similarity Measure: Two points are more similar if the events described by them frequently happen together on the same day. We used association rules to quantify a similarity measure.

Deviation/Anomaly Detection Detect significant deviations from normal behavior Applications: Credit Card Fraud Detection Network Intrusion Detection Typical network traffic at University level may reach over 100 million connections per day

Challenges of Data Mining Scalability Dimensionality Complex and Heterogeneous Data Data Quality Data Ownership and Distribution Privacy Preservation Streaming Data