GZK EHE detection What is the GZK mechanism? EHE Propagation in the Earth Expected intensities at the IceCube depth Atmospheric – background Event rate TAUP 2003
GZK Neutrino Production K 411 photons / cm x cm 2 γ p n p π + μ + ν e + ν γ E = eV E 0.8 x eV ~ Conventional Mechanism of EHE neutrinos!!
TAUP 2003 Yoshida and Teshima 1993 Yoshida, Dai, Jui, Sommers 1997 Note: The oscillations convert e, to e, ,
TAUP 2003 / propagation in Earth
e e e/ Weak Incoming Products Weak Cascades Decay Weak Pair/decay Bremss Pair PhotoNucl. Decay Pair Pair Bremss Decay Weak Decay
TAUP 2003 Tau(Neutrinos) from Suppression By decay Muon(Neutrinos) from Nadir Angle
1.4 km 1km Upward Ice Rock ν ± π γ ν + e - e 1km Downward ν γ γ + e - e lepton
TAUP 2003 Upward-goingDownward going!! Atmospheric muon! – a major backgrond But so steep spectrum
TAUP 2003 Down-going events dominates… 1400 m 2800 m 11000m UpDown Atmospheric is strongly attenuated…
Flux as a function of energy deposit in km 3 dE/dX~ E E~ XbE
TAUP 2003 UpDown
TAUP 2003 Intensity of EHE and GZK m=4 Z max =4 I (E>10PeV)I (E>10PeV) RATE [/yr/ km 2 ] Down Up I (E>10PeV) Energy Deposit I (E>10PeV) Energy Deposit Down m=7 Z max =5 Down Atm [cm -2 sec -1 ]
E µ =10 TeV ≈ 90 hitsE µ =6 PeV ≈ 1000 hits How EHE events look like The typical light cylinder generated by a muon of 100 GeV is 20 m, 1PeV 400 m, 1EeV it is about 600 to 700 m.
TAUP 2003 Conclusion appeared in 10 PeV- EeV are our prime target on GZK detection. 1/100-1/500 of primary intensity! Downward and make main contributions in PeV -EeV Energy Estimation would be a key for the bg reduction Because atmospheric spectrum ~ E -3.7 GZK is DETECTABLE by IceCube events/year (BG 0.05 events/year) IceCube has great capability for TeV-PeV -induced muons taking advantage of long range in the clear ice. For EHE like the GZK….