Spin chains and strings in Y p,q and L p,q|r manifolds Martin Kruczenski Princeton University Based on hep-th/0505046 and hep-th/0505206 w/ S. Benvenuti.

Slides:



Advertisements
Similar presentations
Brane Tilings and New Horizons Beyond Them
Advertisements

Based on arXiv:1107.xxxx with G. Mandal (TIFR) What is the gravity dual of the confinement/deconfinement transportation in holographic QCD Takeshi Morita.
Brane Tilings and New Horizons Beyond Them Calabi-Yau Manifolds, Quivers and Graphs Sebastián Franco Durham University Lecture 2.
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Brane-World Inflation
Summing planar diagrams
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Higgs Bundles and String Phenomenology M. Wijnholt, LMU Munich String-Math Philadelphia, June
BRANE SOLUTIONS AND RG FLOW UNIVERSIDADE FEDERAL DE CAMPINA GRANDE September 2006 FRANCISCO A. BRITO.
Baryon Chemical Potential in AdS/CFT Shin Nakamura CQUeST and Hanyang Univ. Refs. S.N.-Seo-Sin-Yogendran, hep-th/ and arXiv: (hep-th)
A New Holographic View of Singularities Gary Horowitz UC Santa Barbara with A. Lawrence and E. Silverstein arXiv: Gary Horowitz UC Santa Barbara.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
The Giant Magnon and Spike Solution Chanyong Park (CQUeST) Haengdang Workshop ’07, The Giant Magnon and Spike Solution Chanyong Park.
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Holographic three-point functions of semiclassical states Konstantin Zarembo (Nordita) "From sigma models to four-dimensional QFT“, Hamburg, K.Z.,
On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn.
Gauge/gravity duality and meta-stable SUSY breaking Sebastián Franco Princeton University Based on:hep-th/ : Argurio, Bertolini, Franco and Kachru.
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K. arXiv: arXiv: R. Ishizeki,
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 2009.
D-Branes and Giant Gravitons in AdS4xCP3
Anti de Sitter Black Holes Harvey Reall University of Nottingham.
Spiky Strings in the SL(2) Bethe Ansatz
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Spiky Strings and Giant Magnons on S 5 M. Kruczenski Purdue University Based on: hep-th/ (Russo, Tseytlin, M.K.)
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
String / gauge theory duality and ferromagnetic spin chains Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov M. Kruczenski Princeton.
Anti de Sitter Black Holes Harvey Reall University of Nottingham.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
SUSY Breaking in D-brane Models Beyond Orbifold Singularities Sebastián Franco Durham University José F. Morales INFN - Tor Vergata.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
Super Yang Mills Scattering amplitudes at strong coupling Juan Maldacena Based on L. Alday & JM arXiv: [hep-th] & to appear Strings 2007, Madrid.
AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
1 Sebastián Franco SLAC Theory Group IPPP Durham University.
World-sheet Scattering in AdS 5 xS 5 Konstantin Zarembo (Uppsala U.) Random Matrix Theory: Recent Applications, Copenhagen, T.Klose, T.McLoughlin,
Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon,
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Holography of Wilson-loop expectation values with local operator insertions Akitsugu Miwa ( Univ. of Tokyo, Komaba ) work in collaboration with Tamiaki.
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Introduction to Strings Yoshihisa Kitazawa KEK Nasu lecture 9/25/06.
Wilson Loops in AdS/CFT M. Kruczenski Purdue University Miami Based on work in collaboration with Arkady Tseytlin (Imperial College). To appear.
Emergent IR Dual 2d CFTs in Charged AdS 5 Black Holes Maria Johnstone (University of Edinburgh) Korea Institute for Advanced Study (KIAS) 20 th February.
Bethe Ansatz in AdS/CFT: from local operators to classical strings Konstantin Zarembo (Uppsala U.) J. Minahan, K. Z., hep-th/ N. Beisert, J. Minahan,
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
Heidelberg, June 2008 Volker Schomerus - DESY Hamburg - Of Mesons and Metals – Bethe & the 5th Dimension.
AdS/CFT “Applications” Jorge Casalderrey-Solana LBNL.
Bethe Ansatz in AdS/CFT Correspondence Konstantin Zarembo (Uppsala U.) J. Minahan, K. Z., hep-th/ N. Beisert, J. Minahan, M. Staudacher, K. Z.,
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Goro Ishiki (University of Tsukuba) arXiv: [hep-th]
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
P-Term Cosmology A.C. Davis (with C. Burrage) ,
GEOMETRIC DESCRIPTION OF THE STANDARD MODEL Kang-Sin CHOI Ewha Womans University SUSY 14, University of Manchester June 22, 2014 Based on
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Semiclassical correlation functions in holography Kostya Zarembo “Strings, Gauge Theory and the LHC”, Copenhagen, K.Z.,
1 Marginal Deformations and Penrose limits with continuous spectrum Toni Mateos Imperial College London Universitat de Barcelona, December 22, 2005.
Cyrille Marquet Columbia University
Dimer models and orientifolds
Quark Mass in Holographic QCD
Gravity from Entanglement and RG Flow
EMERGENT CLASSICAL STRINGS
Presentation transcript:

Spin chains and strings in Y p,q and L p,q|r manifolds Martin Kruczenski Princeton University Based on hep-th/ and hep-th/ w/ S. Benvenuti ( Scuola Normale & INFN, Pisa, Italy)

Summary Introduction: N=4 AdS/CFT: Strings  Long ops.  Point-like strings  BPS ops.  String excitations  insertions  Long strings  semiclassical states N=1 AdS/CFT  AdS 5 x X 5 ; X 5 is Sasaki-Einstein  X 5 : T 1,1 SU(2) x SU(2) x U(1) Y p,q SU(2) x U(1) x U(1) L p,q | r U(1) x U(1) x U(1)

Y p,q  Massless geodesics and long operators: matching of R and flavor charges.  Extended strings (Qualitative) Eff. action appears in f.t. and is similar but not equal to string side. L p,q | r  Derivation of dual field theory  Massless geodesics and long operators: matching of R and flavor charges.

N=4 SYM  II B on AdS 5 x S 5 Strings? Long operators  Strings (BMN, GKP) an. dimension  Energy Frolov-Tseytlin: Long strings Minahan-Zarembo: Spin chains Bethe Ansatz (BFST) X=  1 +i  2 ;Y=  3 +i  4 ; O=Tr(XY…Y) Long chains (J  ) are classical S eff : Action of spin chain and fast strings. ( M.K.; Ryzhov, Tseytlin, M.K.; … )

Strings as states of N=4 SYM on RxS 3 The operator O=  c i [ Tr(XY…Y) ] i maps to a state of the field th. on S 3 State: delocalized and has a large number of particles (X and Y). Q.M. : |  = cos(  /2) exp(i  /2 ) |X  + sin(  /2) exp(- i  /2) |Y  We can use v i = |  (  i,  i )  to construct: O= Tr (v 1 v 2 v 3 … v n ) (Coherent state)

Strings are useful to describe states of a large number of particles (in the large N limit)

N=1 AdS 5 x X 5 ; X 5 : Sasaki-Einstein ds 2 = dx 2 [4] + dr 2 + r 2 dX 5 2  CY cone Put D3 branes at r = 0 and take near horizon limit: ds 2 = + dX 5 2, AdS 5 x X 5 T 1,1 (conifold) Klebanov-Witten Y p,q Gauntlett, Martelli, Sparks,Waldram Benvenuti, Franco, Hanany, Martelli, Sparks L p,q | r Cvetic, Lu, Page, Pope; Benvenuti, M.K.; Franco, Hanany, Martelli, Sparks, Vegh, Wecht; Butti, Forcella, Zaffaroni

T 1,1 Y p,q (Gauntlett, Martelli, Sparks,Waldram) ; y 1 < y < y 2 If    = 6  +  ; only p(y) appears.

Point-like strings (massless geodesics) Const.: t =   ; P t =  =  ;   (3/2) Q R ; Q R = 2P  - (1/3) P 

BPS geodesics  = (3/2) Q R  P y = 0, J = P , Therefore, y is the r atio between U(1) and R-charges. Also : ( from J = P  )

Dual gauge theories (Benvenuti, Franco, Hanany, Martelli, Sparks) Example: Y 3,2 Periodic rep.: ( Hanany, Kennaway, Franco, Vegh, Wecht )

Operators of maximum and minimum slopes can be identified with the geodesics at y=y 1 and y=y 2 R-charges and flavor charges match. (Also: Berenstein, Herzog, Ouyang, Pinansky)

Small Fluctuations (BMN, GKP, Gomis-Ooguri, Klebanov et al.) Quantize:  =2n,  Q R =0,  P  =0,  J=0 Also (J>P  ):  =2n,  Q R =0,  P  =0,  J=n Agree with quantum numbers of U(1) and SU(2) currents  we identify these non-BPS geodesics with insertions of the currents. (Also Sonnenschein et al.)

Extended Strings We consider closed extended strings such that each point moves approximately along a BPS geodesic. Effective action for such strings: We introduce a coordinate  1 =  - 3t Now we use ansatz: t =  

and take the limit:   X  0,   ,    X fixed. We get a reduced action: In our case:

Example of T 1,1 (Angelova, Pando-Zayas, M.K. ; Strassler et al. ) Field theory: Tr(ABABAB…ABAB) ; SU(2)xSU(2) W=  ab  cd Tr ( A a B c A b B d )

For Y p,q y(  )  slope(  );  : conjugate of y + spin  ( ,  ) Effective model: (max and min slopes)

Hamiltonian H = h eff.  ( 1 - P i i+1 ) Coherent States: ; The coherent state action is which gives:

where p(y) = ( y 2 – y ) ( y – y 1 ) instead of It is interesting that a string picture (and action) for the operators emerges from the analysis.

Toric Varieties (z 1,z 2 ) ≡ w (z 1,z 2 ) (z 1, z 2, z 3 ) ≡ w (z 1, z 2, z 3 ) S2S2 (z 1 e i α, z 2 e i β, z 3 ) (C 3 )* / C

L pq|r r = p + q - sq = a s - p b (a,p) (b,s) (Also Butti, Zaffaroni, generic polygon)

L p,q | r Metric: ( Cvetic, Lu, Page, Pope) x 1 < x < x 2 -1<y<1

To write the metric in this way we needed to identify the angle conjugated to the R-charge. This can be done by finding the covariantly constant holomorphic three form in the Calabi-Yau.

Massless geodesics

Field Theory: Benvenuti, M.K.; Franco, Hanany, Martelli, Sparks, Vegh, Wecht; Butti, Forcella, Zaffaroni Example: Y 3,2 = L 1,5 | 3 L 1,5 | 4

In general gives L p,q | r. Using a-max one can compute the R-charges and the central charge. Everything matches. The parameters can be mapped from one description to the other.

Long chiral primaries: can be matched to geodesics at the “corners”:

Conclusions Y p,q  Massless BPS geod.  Chiral primaries.  Non-BPS geodesics  Current insertions.  Extended strings  Long operators.  Effective action emerges in f.t. Similar but not equal to bulk eff. action. L p,q | r  Found dual gauge theories.  Matched BPS geodesics with long chiral primaries.  Strings? Three dimensional quiver?