半導體量測技術 Semiconductor Materials and Device Characterization Topic 5: oxide trapped charge and poly-depletion effect in MOSFET Instructor: Dr. Yi-Mu Lee.

Slides:



Advertisements
Similar presentations
OXIDE AND INTERFACE TRAPPED CHARGES, OXIDE THICKNESS
Advertisements

MOSFETs MOSFETs ECE 663.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Semiconductor Materials and Device Characterization
半導體量測技術 Semiconductor Materials and Device Characterization Topic 2: measurement of doping profile Instructor: Dr. Yi-Mu Lee Department of Electronic Engineering.
Lecture 11: MOS Transistor
半導體量測技術 Semiconductor Materials and Device Characterization Topic 8: physical characterization of semiconductor Instructor: Dr. Yi-Mu Lee Department of.
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter IV June 14, 2015June 14, 2015June 14, 2015 P-n Junction.
Semiconductor Materials and Device Characterization
Metal-Oxide-Semiconductor (MOS)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture 10: PN Junction & MOS Capacitors
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
半導體量測技術 Semiconductor Materials and Device Characterization Topic 6: charge pumping technique and HS experiment Instructor: Dr. Yi-Mu Lee Department of.
Spring 2007EE130 Lecture 32, Slide 1 Lecture #32 OUTLINE The MOS Capacitor: Capacitance-voltage (C-V) characteristics Reading: Chapter 16.4.
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
半導體量測技術 Semiconductor Materials and Device Characterization Topic 4: resistance and effective channel length in MOSFET Instructor: Dr. Yi-Mu Lee Department.
ECE 431 Digital Circuit Design Chapter 3 MOS Transistor (MOSFET) (slides 2: key Notes) Lecture given by Qiliang Li 1.
Qualitative Discussion of MOS Transistors. Big Picture ES220 (Electric Circuits) – R, L, C, transformer, op-amp ES230 (Electronics I) – Diodes – BJT –
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
OXIDE AND INTERFACE TRAPPED CHARGES, OXIDE THICKNESS
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Norhayati Soin 06 KEEE 4426 WEEK 3/2 13/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 2) CHAPTER 1.
Qualitative Discussion of MOS Transistors. Big Picture ES230 – Diodes – BJT – Op-Amps ES330 – Applications of Op-Amps – CMOS Analog applications Digital.
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements Erik C. Garnett, Yu-Chih Tseng, Devesh R. Khanal, Junqiao.
ELECTRONICS II VLSI DESIGN FALL 2013 LECTURE 4 INSTRUCTOR: L.M. HEAD, PhD ELECTRICAL & COMPUTER ENGINEERING ROWAN UNIVERSITY.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
Introduction to MOS Transistors Section Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model.
Terminal Impedances Eq Eq Eq
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to MOSCAP*
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 38 MOS capacitor Threshold Voltage Inversion: at V > V T (for NMOS), many electrons.
Integrated Circuit Devices
© S.N. Sabki CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES.
MOS capacitor before joining The metallic gate may be replaced with a heavily doped p+ polysilicon gate. The Fermi energy levels are approximately at.
Introduction to CMOS VLSI Design CMOS Transistor Theory
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
MOS CAPACITOR Department of Materials Science & Engineering
EE130/230A Discussion 10 Peng Zheng.
CHAPTER INTRODUCTION 6.2 QUASI-STATIC OPERATION.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
MOS Transistor Theory The MOS transistor is a majority carrier device having the current in the conducting channel being controlled by the voltage applied.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
Extraction of Doping Profile in Substrate of MNOS capacitor Using Fast Voltage Ramp Deep Depletion C-V method.
MOS Capacitor Lecture #5. Transistor Voltage controlled switch or amplifier : control the output by the input to achieve switch or amplifier Two types.
Power MOSFET Pranjal Barman.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Revision CHAPTER 6.
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
منبع: & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
MOS Capacitors Dr. David W. Graham West Virginia University
MOSCAP Non-idealities
Presentation transcript:

半導體量測技術 Semiconductor Materials and Device Characterization Topic 5: oxide trapped charge and poly-depletion effect in MOSFET Instructor: Dr. Yi-Mu Lee Department of Electronic Engineering National United University

Determine Q ot or Q m : D. K. Schroder, p. 363

Q ot QmQm no effect has effect effect on both sweeping direction D. K. Schroder, p. 363

Finite gate doping density: Typical doping densities: ~10 20 /cm 3 D. K. Schroder, p. 351

Poly depletion effect on C-V curve (PMOS device): Lf and hf C-V: both showing capacitance drop Why? D. K. Schroder, p. 351

Poly depletion effects: 1.Change V t 2.Reduce the drain current 3.Increase gate resistance 1~3: reduce circuit speed

V FB -t ox plot: determine work function and Q f D. K. Schroder, p. 360

D. K. Schroder, p. 361

D. K. Schroder, p. 339

D. K. Schroder, p. 340

Fig 6.4 (a) D. K. Schroder, p. 341

Fig 6.4 (b) and (c) (b) –Vg, surface: accumulated, Q p dominates, C p is very high, so C p, C b, C n, C it are shorted (c) Small +Vg, depleted surface, Q b dominates Depletion to weak inversion Fig. from D. K. Schroder, p. 341

Fig 6.4 (d) and (e) (d) Strong inversion: C n can follow applied ac voltage, low-freq (e) Inversion charge can’t follow ac voltage, high-freq Fig. from D. K. Schroder, p. 341

Interface trapped charge (Q it ) Low-freq (quasistatic) method Effect of Q it on lf and hf C-V acceptor-like and donor-like trap density

High-freq CV Distorted C-V stretch-out due to gate-voltage axis Qit doesnot contribute capacitance Fig. from D. K. Schroder, p. 369

Low-freq CV additional capacitance: Q it respond low-frequency Qit does contribute capacitance Donor-like trap acceptor-like trap inversion delay Fig. from D. K. Schroder, p. 369

Review: P. 346 (exercise 6.1) Band structure (equilibrium, non-equilibrium) P. 368~372 Derive eq (6.44) and (6.47)