Binomial Theorem
Go to slide 11
Introduction
Notice
Using Sigma Notation
Example
The Special Case ( 1 + x ) n
Example (1 + x ) 6
What about when n is not a natural number?
The Binomial Series
Let f(x) = ( 1 + x ) n, n ЄR-(NU{0}) Let’s find the Maclaurin series for f f (k) (0)f (k) (x)k 1( 1 + x ) n 0 nn( 1 + x ) n-1 1 n(n-1)n(n-1)( 1 + x ) n-2 2 n(n-1)(n-2)n(n-1)(n-2)( 1 + x ) n-3 3 n(n-1)(n-2)(n-3)n(n-1)(n-2)(n-3)( 1 + x ) n-4 4 n(n-1)(n-2)(n-3)….[n-(k-1)] n(n-1)(n-2)…..….[n-(k-1)] ( 1 + x ) n-k k
Thus the Maclaurin series for (1+x) n
Thus the Maclaurin series for f
Finding the interval of convergence of this series:
Example Expand and then use the expansion to obtain a rough estimation of 1/√2
Solution
Approximating 1/√2
Homework