Chapter 7: Trees Objectives:

Slides:



Advertisements
Similar presentations
Trees and Binary Trees Become Rich Force Others to be Poor Rob Banks
Advertisements

Trees1 More on Trees University Fac. of Sci. & Eng. Bus. School Law School CS Dept. EE Dept. Math. Dept.
Data Structures Lecture 6 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Trees Briana B. Morrison Adapted from Alan Eugenio.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Elementary Data Structures
© 2004 Goodrich, Tamassia Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
© 2004 Goodrich, Tamassia Priority Queues1 Heaps: Tree-based Implementation of a Priority Queue.
© 2004 Goodrich, Tamassia Trees1 Chapter 7 Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
Trees1 Recursion Recursion is a concept of defining a method that makes a call to itself.
© 2004 Goodrich, Tamassia Trees1 Lecture 04 Trees Topics Trees Binary Trees Binary Search trees.
Elementary Data Structures Stacks, Queues, & Lists Amortized analysis Trees.
1 Chapter 7 Trees. 2 What is a Tree In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child.
© 2004 Goodrich, Tamassia Trees1 this is a tree. © 2004 Goodrich, Tamassia Trees2 What is a Tree? In computer science, a tree is an abstract model of.
Trees COMP53 Oct 31, What is a Tree? A tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child relation.
Trees1 Part-C Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
CSC401 – Analysis of Algorithms Lecture Notes 4 Trees and Priority Queues Objectives: General Trees and ADT Properties of Trees Tree Traversals Binary.
General Trees. Tree Traversal Algorithms. Binary Trees. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Trees Chapter 8.
Trees1 Stacks (Background). Dr.Alagoz Trees2 Applications of Stacks Direct applications Page-visited history in a Web browser Undo sequence in a text.
Trees.
Make Money Fast! Stock Fraud Apply shortcuts Bank Robbery Just For Laughs Trees This one is cool eITnotes.com For more notes and topics visit:
Trees CSCI 3333 Data Structures. Acknowledgement  Dr. Bun Yue  Mr. Charles Moen  Dr. Wei Ding  Ms. Krishani Abeysekera  Dr. Michael Goodrich  Dr.
Chapter 7:Trees Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided with Data Structures.
Saturday, 04 Apr 2010 University of Palestine Computer Science II Trees.
Trees. What is a Tree? In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent- child relation.
Trees 4/23/2017 Trees.
© 2004 Goodrich, Tamassia Trees1 Text Book: M. T. Goodrich and R. Tamassia, "Data Structures and Algorithms in Java," 4th edition, 2006, Wiley & Sons,
Trees by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data Structures.
1 Binary Trees (7.3) CSE 2011 Winter November 2015.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
Lecture11: Tree I Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2013 Goodrich, Tamassia, Goldwasser.
Trees trees binary trees traversals of trees template method pattern
CH 7. TREES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY.
24 January Trees CSE 2011 Winter Trees Linear access time of linked lists is prohibitive  Does there exist any simple data structure for.
CH 7 : TREE ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
© 2004 Goodrich, Tamassia Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
TREE Ahsan Ahmed College of Computer and Information Science Majma’ah University 1.
1 COMP9024: Data Structures and Algorithms Week Five: Trees Hui Wu Session 1, 2015
Trees1 Stacks (Background). Dr.Alagoz Trees2 Applications of Stacks Direct applications Page-visited history in a Web browser Undo sequence in a text.
What is a Tree? Formally, we define a tree T as a set of nodes storing elements such that the nodes have a parent-child relationship, that satisfies the.
Elementary Data Structures
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees 5/2/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Trees 5/10/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Searching (and into Trees)
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery Trees
Stacks (Background) Trees.
Trees 8/7/2018 2:27 PM Binary Trees © 2010 Goodrich, Tamassia Trees.
Trees 二○一八年八月二十六日 Part-C Trees Trees.
Trees Chuan-Ming Liu Computer Science & Information Engineering
© 2013 Goodrich, Tamassia, Goldwasser
Trees 9/21/2018 9:58 PM Trees this is a tree Trees.
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Elementary Data Structures
Week nine-ten: Trees Trees.
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery Trees
Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb CLRS, Section 10.4.
Trees Palestine Gaza West Bank 48 Stolen Land Trees Trees
Lecture 8: Iterators, Trees
Copyright © Aiman Hanna All rights reserved
Lecture 9 CS2013.
CS210- Lecture 9 June 20, 2005 Announcements
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Presentation transcript:

Chapter 7: Trees Objectives: Introduce general tree structure and Tree ADT Discuss the depth and height of trees Introduce the tree traversal algorithms Specialize to binary trees Implement binary trees with linked structure and array-list structure Introduce the Template Method Pattern CSC311: Data Structures

What is a Tree In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child relation Applications: Organization charts File systems Programming environments Computers”R”Us Sales R&D Manufacturing Laptops Desktops US International Europe Asia Canada Trees CSC311: Data Structures

Tree Terminology subtree Root: node without parent (A) Internal node: node with at least one child (A, B, C, F) External node (a.k.a. leaf ): node without children (E, I, J, K, G, H, D) Ancestors of a node: parent, grandparent, grand-grandparent, etc. Depth of a node: number of ancestors Height of a tree: maximum depth of any node (3) Descendant of a node: child, grandchild, grand-grandchild, etc. Subtree: tree consisting of a node and its descendants A B D C G H E F I J K subtree Trees CSC311: Data Structures

Tree ADT We use positions to abstract nodes Generic methods: integer size() boolean isEmpty() Iterator iterator() Iterator positions() Accessor methods: position root() position parent(p) positionIterator children(p) Query methods: boolean isInternal(p) boolean isExternal(p) boolean isRoot(p) Update method: object replace (p, o) Additional update methods may be defined by data structures implementing the Tree ADT Trees CSC311: Data Structures

Depth of a Node The depth of a node v in a tree T is defined as: Algorithm depth(T, v) Input: Tree T and a node v Output: an integer that is the depth of v in T If v is the root of T then return 0 Else return 1 + depth(T, parent(v)) The depth of a node v in a tree T is defined as: If v is the root, then its depth is 0; Otherwise, its depth is one plus the depth of its parent Trees CSC311: Data Structures

Height of a Node The height of a node v in a tree T is defined as: Algorithm height(T, v) Input: Tree T and a node v Output: an integer that is the height of v in T If v is an external of T then return 0 Else h0 for each child w of v in T do hmax(h, height(T,w)) return 1+h The height of a node v in a tree T is defined as: If v is an external, then its height is 0; Otherwise, its height is one plus the maximum height of its children Trees CSC311: Data Structures

Features on Height The height of a nonempty tree T is equal to the maximum depth of an external node of T Let T be a tree with n nodes, and let cv denote the number if children of a node v of T. The summing over the vertices in T, vcv=n-1. Trees CSC311: Data Structures

Preorder Traversal Algorithm preOrder(v) visit(v) A traversal visits the nodes of a tree in a systematic manner In a preorder traversal, a node is visited before its descendants Application: print a structured document Algorithm preOrder(v) visit(v) for each child w of v preorder (w) 1 Make Money Fast! 2 5 9 1. Motivations 2. Methods References 6 7 8 3 4 2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery 1.1 Greed 1.2 Avidity Trees CSC311: Data Structures

Postorder Traversal Algorithm postOrder(v) for each child w of v In a postorder traversal, a node is visited after its descendants Application: compute space used by files in a directory and its subdirectories Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) 9 cs16/ 8 3 7 todo.txt 1K homeworks/ programs/ 1 2 4 5 6 h1c.doc 3K h1nc.doc 2K DDR.java 10K Stocks.java 25K Robot.java 20K Trees CSC311: Data Structures

Binary Trees Applications: arithmetic expressions decision processes searching A binary tree is a tree with the following properties: Each internal node has at most two children (exactly two for proper binary trees) The children of a node are an ordered pair We call the children of an internal node left child and right child Alternative recursive definition: a binary tree is either a tree consisting of a single node, or a tree whose root has an ordered pair of children, each of which is a binary tree A B C F G D E H I Trees CSC311: Data Structures

Arithmetic Expression Tree Binary tree associated with an arithmetic expression internal nodes: operators external nodes: operands Example: arithmetic expression tree for the expression (2  (a - 1) + (3  b)) +  - 2 a 1 3 b Trees CSC311: Data Structures

Decision Tree Binary tree associated with a decision process internal nodes: questions with yes/no answer external nodes: decisions Example: dining decision Want a fast meal? Yes No How about coffee? On expense account? Yes No Yes No Starbucks Spike’s Al Forno Café Paragon Trees CSC311: Data Structures

BinaryTree ADT The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT Additional methods: position left(p) position right(p) boolean hasLeft(p) boolean hasRight(p) Update methods may be defined by data structures implementing the BinaryTree ADT Trees CSC311: Data Structures

Properties of Proper Binary Trees e = i + 1 n = 2e - 1 h  i h  (n - 1)/2 e  2h h  log2 e h  log2 (n + 1) - 1 Notation n number of nodes e number of external nodes i number of internal nodes h height Trees CSC311: Data Structures

Inorder Traversal Algorithm inOrder(v) if hasLeft (v) In an inorder traversal a node is visited after its left subtree and before its right subtree Application: draw a binary tree x(v) = inorder rank of v y(v) = depth of v Algorithm inOrder(v) if hasLeft (v) inOrder (left (v)) visit(v) if hasRight (v) inOrder (right (v)) 6 2 8 1 4 7 9 3 5 Trees CSC311: Data Structures

Print Arithmetic Expressions Algorithm printExpression(v) if hasLeft (v) print(“(’’) inOrder (left(v)) print(v.element ()) if hasRight (v) inOrder (right(v)) print (“)’’) Specialization of an inorder traversal print operand or operator when visiting node print “(“ before traversing left subtree print “)“ after traversing right subtree +  - 2 a 1 3 b ((2  (a - 1)) + (3  b)) Trees CSC311: Data Structures

Evaluate Arithmetic Expressions Specialization of a postorder traversal recursive method returning the value of a subtree when visiting an internal node, combine the values of the subtrees Algorithm evalExpr(v) if isExternal (v) return v.element () else x  evalExpr(leftChild (v)) y  evalExpr(rightChild (v))   operator stored at v return x  y +  - 2 5 1 3 Trees CSC311: Data Structures

Euler Tour Traversal +   2 - 3 2 5 1 Generic traversal of a binary tree Includes a special cases the preorder, postorder and inorder traversals Walk around the tree and visit each node three times: on the left (preorder) from below (inorder) on the right (postorder) + L  R  B 2 - 3 2 5 1 Trees CSC311: Data Structures

Template Method Pattern Generic algorithm that can be specialized by redefining certain steps Implemented by means of an abstract Java class Visit methods that can be redefined by subclasses Template method eulerTour Recursively called on the left and right children A Result object with fields leftResult, rightResult and finalResult keeps track of the output of the recursive calls to eulerTour public abstract class EulerTour { protected BinaryTree tree; protected void visitExternal(Position p, Result r) { } protected void visitLeft(Position p, Result r) { } protected void visitBelow(Position p, Result r) { } protected void visitRight(Position p, Result r) { } protected Object eulerTour(Position p) { Result r = new Result(); if tree.isExternal(p) { visitExternal(p, r); } else { visitLeft(p, r); r.leftResult = eulerTour(tree.left(p)); visitBelow(p, r); r.rightResult = eulerTour(tree.right(p)); visitRight(p, r); return r.finalResult; } … Trees CSC311: Data Structures

Specializations of EulerTour We show how to specialize class EulerTour to evaluate an arithmetic expression Assumptions External nodes store Integer objects Internal nodes store Operator objects supporting method operation (Integer, Integer) public class EvaluateExpression extends EulerTour { protected void visitExternal(Position p, Result r) { r.finalResult = (Integer) p.element(); } protected void visitRight(Position p, Result r) { Operator op = (Operator) p.element(); r.finalResult = op.operation( (Integer) r.leftResult, (Integer) r.rightResult ); } … } Trees CSC311: Data Structures

Linked Structure for Trees A node is represented by an object storing Element Parent node Sequence of children nodes Node objects implement the Position ADT  B   A D F B A D F   C E C E Trees CSC311: Data Structures

Linked Structure for Binary Trees A node is represented by an object storing Element Parent node Left child node Right child node Node objects implement the Position ADT  B   A D B A D     C E C E Trees CSC311: Data Structures

Array-Based Representation of Binary Trees nodes are stored in an array 1 A H G F E D C B J … 2 3 let rank(node) be defined as follows: rank(root) = 1 if node is the left child of parent(node), rank(node) = 2*rank(parent(node)) if node is the right child of parent(node), rank(node) = 2*rank(parent(node))+1 4 5 6 7 10 11 Trees CSC311: Data Structures

Array-Based Representation of Binary Trees: Properties Let n be the number of nodes of a binary tree T Let pM be the maximum value of rank(v) over all the nodes of T The array size N = pM+1 In the worst case, N = 2n Trees CSC311: Data Structures