1 © Prentice Hall, 2002 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B.

Slides:



Advertisements
Similar presentations
Chapter 4: Logical Database Design and the Relational Model (Part I)
Advertisements

1 Logical Database Design and the Relational Model Modern Database Management.
Database Design & Mapping
DATABASE APPLICATION DEVELOPMENT SAK 3408 Database Design II (week 3)
Systems Development Life Cycle
© 2005 by Prentice Hall 1 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 7 th Edition Jeffrey A. Hoffer, Mary B.
© 2005 by Prentice Hall Chapter 3a Database Design Modern Systems Analysis and Design Fourth Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich.
Database Design Conceptual –identify important entities and relationships –determine attribute domains and candidate keys –draw the E-R diagram Logical.
Chapter 4: Logical Database Design and the Relational Model
© 2007 by Prentice Hall 1 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 8 th Edition Jeffrey A. Hoffer, Mary B.
Michael F. Price College of Business Chapter 6: Logical database design and the relational model.
© 2007 by Prentice Hall (Hoffer, Prescott & McFadden) 1 The Relational Model (Advanced)
 Keys are special fields that serve two main purposes: ◦ Primary keys are unique identifiers of the relation in question. Examples include employee numbers,
Chapter 5: Logical Database Design and the Relational Model
Normalization Rules for Database Tables Northern Arizona University College of Business Administration.
TM 6-1 Copyright © Addison Wesley Longman, Inc. & Dr. Chen, Business Database Systems Logical Database Design and the Relational Database Professor Chen.
Chapter 5 1 © Prentice Hall, 2002 Chapter 5: Transforming EER Diagrams into Relations Mapping Regular Entities to Relations 1. Simple attributes: E-R attributes.
© 2011 Pearson Education, Inc. Publishing as Prentice Hall 1 Chapter 4: Logical Database Design and the Relational Model Modern Database Management 10.
Chapter 4: Logical Database Design and the Relational Model (Part II)
Web-Enabled Decision Support Systems
MIS 385/MBA 664 Systems Implementation with DBMS/ Database Management Dave Salisbury ( )
Concepts and Terminology Introduction to Database.
Mapping from Data Model (ERD) to Relational Model
Chapter 5: Logical Database Design and the Relational Model
Concepts of Relational Databases. Fundamental Concepts Relational data model – A data model representing data in the form of tables Relations – A 2-dimensional.
Logical Database Design Relational Model. Logical Database Design Logical database design: process of transforming conceptual data model into a logical.
SALINI SUDESH. Primarily a tool to validate and improve a logical design so that it satisfies certain constraints that avoid unnecessary duplication of.
Chapter 7 1 Database Principles Data Normalization Primarily a tool to validate and improve a logical design so that it satisfies certain constraints that.
Chapter 4 © 2013 Pearson Education, Inc. Publishing as Prentice Hall 1 CHAPTER 4: LOGICAL DATABASE DESIGN AND THE RELATIONAL MODEL (PART I) Modern Database.
CS 370 Database Systems Lecture 9 The Relational model.
Object-Relational Modeling. What Is a Relational Data Model? Based on the concept of relations (tables of data) Relationships established by matching.
Chapter 5 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 8 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred.
Unit 4 Object Relational Modeling. Key Concepts Object-Relational Modeling outcomes and process Relational data model Normalization Anomalies Functional.
Chapter 9: Logical Database Design and the Relational Model (ERD Mapping)
© 2005 by Prentice Hall 1 The Database Development Process Dr. Emad M. Alsukhni The Database Development Process Dr. Emad M. Alsukhni Modern Database Management.
1 © Prentice Hall, 2002 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B.
CS263 Lecture 5: Logical Database Design Can express the structure of a relation by a Tuple, a shorthand notation Name of the relation is followed (in.
Pree Thiengburanathum, CAMT, Chiang Mai University 1 Database System Logical Database Design and the Relational Model November 1 st, 2009 Software Park,
Logical Database Design and the Relational Model.
© 2009 Pearson Education, Inc. Publishing as Prentice Hall 1 Chapter 5 (Part c): Logical Database Design and the Relational Model Modern Database Management.
1 ER Modeling BUAD/American University Mapping ER modeling to Relationships.
Chapter 10 Designing Databases. Objectives:  Define key database design terms.  Explain the role of database design in the IS development process. 
1 © Prentice Hall, 2002 ITD1312 Database Principles Chapter 4B: Logical Design for Relational Systems -- Transforming ER Diagrams into Relations Modern.
Logical Database Design and the Relational Model.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 7 Normalization Hour1,2 Presented & Modified by Mahmoud Rafeek Alfarra.
© 2009 Pearson Education, Inc. Publishing as Prentice Hall 1 Chapter 5 (Part a): Logical Database Design and the Relational Model Modern Database Management.
6-1 © Prentice Hall, 2007 Topic 6: Object-Relational Modeling Object-Oriented Systems Analysis and Design Joey F. George, Dinesh Batra, Joseph S. Valacich,
Copyright © 2016 Pearson Education, Inc. Modern Database Management 12 th Edition Jeff Hoffer, Ramesh Venkataraman, Heikki Topi CHAPTER 3: LOGICAL DATABASE.
Chapter 5 MODULE 6: Normalization © 2007 by Prentice Hall (Hoffer, Prescott & McFadden) 1 Prepared by: KIM GASTHIN M. CALIMQUIM.
© 2007 by Prentice Hall 1 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 8 th Edition Jeffrey A. Hoffer, Mary B.
8-1 © Prentice Hall, 2007 Chapter 8: Object-Relational Modeling Object-Oriented Systems Analysis and Design Joey F. George, Dinesh Batra, Joseph S. Valacich,
Chapter 4, Part A: Logical Database Design and the Relational Model
Lecture 4: Logical Database Design and the Relational Model 1.
Chapter 4 © 2013 Pearson Education, Inc. Publishing as Prentice Hall Chapter 4: Logical Database Design and the Relational Model Modern Database Management.
Copyright © 2016 Pearson Education, Inc. Modern Database Management 12 th Edition Jeff Hoffer, Ramesh Venkataraman, Heikki Topi CHAPTER 4: PART C LOGICAL.
Lecture # 14 Chapter # 5 The Relational Data Model and Relational Database Constraints Database Systems.
Converting ER/EER to logical schema; physical design issues 1.
Logical Database Design and the Rational Model
Chapter 4 Logical Database Design and the Relational Model
Chapter 4: Logical Database Design and the Relational Model
Chapter 4: Part B Logical Database Design and the Relational Model
Chapter 5: Logical Database Design and the Relational Model
Example Question–Is this relation Well Structured? Student
Unit 4: Normalization of Relations
Relational Database.
Chapter 5: Logical Database Design and the Relational Model
CHAPTER 4: LOGICAL DATABASE DESIGN AND THE RELATIONAL MODEL
CHAPTER 4: LOGICAL DATABASE DESIGN AND THE RELATIONAL MODEL
Presentation transcript:

1 © Prentice Hall, 2002 Chapter 5: Logical Database Design and the Relational Model Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden

Chapter 5 2 © Prentice Hall, 2002Relation Definition: A relation is a named, two-dimensional table of data – Table is made up of rows (records), and columns (attribute or field) Not all tables qualify as relations Requirements: – Every relation has a unique name. – Every attribute value is atomic (not multivalued, not composite) – Every row is unique (can’t have two rows with exactly the same values for all their fields) – Attributes (columns) in tables have unique names – The order of the columns is irrelevant – The order of the rows is irrelevant NOTE: all relations are in 1 st Normal form

Chapter 5 3 © Prentice Hall, 2002 Correspondence with ER Model Relations (tables) correspond with entity types and with many-to-many relationship types Rows correspond with entity instances and with many- to-many relationship instances Columns correspond with attributes NOTE: The word relation (in relational database) is NOT the same same the word relationship (in ER model)

Chapter 5 4 © Prentice Hall, 2002 Key Fields Keys are special fields that serve two main purposes: – Primary keys are unique identifiers of the relation in question. Examples include employee numbers, social security numbers, etc. This is how we can guarantee that all rows are unique – Foreign keys are identifiers that enable a dependent relation (on the many side of a relationship) to refer to its parent relation (on the one side of the relationship) Keys can be simple (a single field) or composite (more than one field) Keys usually are used as indexes to speed up the response to user queries (More on this in Ch. 6)

Chapter 5 5 © Prentice Hall, 2002 Figure Schema for four relations (Pine Valley Furniture) Primary Key Foreign Key (implements 1:N relationship between customer and order) Combined, these are a composite primary key (uniquely identifies the order line)…individually they are foreign keys (implement M:N relationship between order and product)

Chapter 5 6 © Prentice Hall, 2002 Integrity Constraints Domain Constraints – Allowable values for an attribute. See Table 5-1 Entity Integrity – No primary key attribute may be null. All primary key fields MUST have data Action Assertions – Business rules. Recall from Ch. 4

Chapter 5 7 © Prentice Hall, 2002 Integrity Constraints Referential Integrity – rule that states that any foreign key value (on the relation of the many side) MUST match a primary key value in the relation of the one side. (Or the foreign key can be null) – For example: Delete Rules Restrict – don’t allow delete of “parent” side if related rows exist in “dependent” side Cascade – automatically delete “dependent” side rows that correspond with the “parent” side row to be deleted Set-to-Null – set the foreign key in the dependent side to null if deleting from the parent side  not allowed for weak entities

Chapter 5 8 © Prentice Hall, 2002 Figure 5-5: Referential integrity constraints (Pine Valley Furniture) Referential integrity constraints are drawn via arrows from dependent to parent table

Chapter 5 9 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Regular Entities to Relations 1. Simple attributes: E-R attributes map directly onto the relation 2. Composite attributes: Use only their simple, component attributes 3. Multi-valued Attribute - Becomes a separate relation with a foreign key taken from the superior entity

Chapter 5 10 © Prentice Hall, 2002 (a) CUSTOMER entity type with simple attributes Figure 5-8: Mapping a regular entity (b) CUSTOMER relation

Chapter 5 11 © Prentice Hall, 2002 (a) CUSTOMER entity type with composite attribute Figure 5-9: Mapping a composite attribute (b) CUSTOMER relation with address detail

Chapter 5 12 © Prentice Hall, 2002 Figure 5-10: Mapping a multivalued attribute 1 – to – many relationship between original entity and new relation (a) Multivalued attribute becomes a separate relation with foreign key (b)

Chapter 5 13 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Weak Entities – Becomes a separate relation with a foreign key taken from the superior entity – Primary key composed of: Partial identifier of weak entity Primary key of identifying relation (strong entity)

Chapter 5 14 © Prentice Hall, 2002 Figure 5-11: Example of mapping a weak entity (a) Weak entity DEPENDENT

Chapter 5 15 © Prentice Hall, 2002 Figure 5-11(b) Relations resulting from weak entity NOTE: the domain constraint for the foreign key should NOT allow null value if DEPENDENT is a weak entity Foreign key Composite primary key

Chapter 5 16 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Binary Relationships – One-to-Many - Primary key on the one side becomes a foreign key on the many side new relation – Many-to-Many - Create a new relation with the primary keys of the two entities as its primary key – One-to-One - Primary key on the mandatory side becomes a foreign key on the optional side

Chapter 5 17 © Prentice Hall, 2002 Figure 5-12: Example of mapping a 1:M relationship (a) Relationship between customers and orders Note the mandatory one

Chapter 5 18 © Prentice Hall, 2002 Figure 5-12(b) Mapping the relationship Again, no null value in the foreign key…this is because of the mandatory minimum cardinality Foreign key

Chapter 5 19 © Prentice Hall, 2002 Figure 5-13: Example of mapping an M:N relationship (a) ER diagram (M:N) The Supplies relationship will need to become a separate relation

Chapter 5 20 © Prentice Hall, 2002 Figure 5-13(b) Three resulting relations New intersection relation Foreign key Composite primary key

Chapter 5 21 © Prentice Hall, 2002 Figure 5-14: Mapping a binary 1:1 relationship (a) Binary 1:1 relationship

Chapter 5 22 © Prentice Hall, 2002 Figure 5-14(b) Resulting relations

Chapter 5 23 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Associative Entities – Identifier Not Assigned Default primary key for the association relation is composed of the primary keys of the two entities (as in M:N relationship) – Identifier Assigned It is natural and familiar to end-users Default identifier may not be unique

Chapter 5 24 © Prentice Hall, 2002 Figure 5-15: Mapping an associative entity (a) Associative entity

Chapter 5 25 © Prentice Hall, 2002 Figure 5-15(b) Three resulting relations

Chapter 5 26 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Unary Relationships – One-to-Many - Recursive foreign key in the same relation – Many-to-Many - Two relations: One for the entity type One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity

Chapter 5 27 © Prentice Hall, 2002 Figure 5-17: Mapping a unary 1:N relationship (a) EMPLOYEE entity with Manages relationship (b) EMPLOYEE relation with recursive foreign key

Chapter 5 28 © Prentice Hall, 2002 Figure 5-18: Mapping a unary M:N relationship (a) Bill-of-materials relationships (M:N) (b) ITEM and COMPONENT relations

Chapter 5 29 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Ternary (and n-ary) Relationships – One relation for each entity and one for the associative entity – Associative entity has foreign keys to each entity in the relationship

Chapter 5 30 © Prentice Hall, 2002 Figure 5-19: Mapping a ternary relationship (a) Ternary relationship with associative entity

Chapter 5 31 © Prentice Hall, 2002 Figure 5-19(b) Mapping the ternary relationship Remember that the primary key MUST be unique

Chapter 5 32 © Prentice Hall, 2002 Transforming EER Diagrams into Relations Mapping Supertype/Subtype Relationships – One relation for supertype and for each subtype – Supertype attributes (including identifier and subtype discriminator) go into supertype relation – Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation – 1:1 relationship established between supertype and each subtype, with supertype as primary table

Chapter 5 33 © Prentice Hall, 2002 Figure 5-20: Supertype/subtype relationships

Chapter 5 34 © Prentice Hall, 2002 Figure 5-21: Mapping Supertype/subtype relationships to relations

Chapter 5 35 © Prentice Hall, 2002 Data Normalization Primarily a tool to validate and improve a logical design so that it satisfies certain constraints that avoid unnecessary duplication of data The process of decomposing relations with anomalies to produce smaller, well- structured relations

Chapter 5 36 © Prentice Hall, 2002 Well-Structured Relations A relation that contains minimal data redundancy and allows users to insert, delete, and update rows without causing data inconsistencies Goal is to avoid anomalies – Insertion Anomaly – adding new rows forces user to create duplicate data – Deletion Anomaly – deleting rows may cause a loss of data that would be needed for other future rows – Modification Anomaly – changing data in a row forces changes to other rows because of duplication General rule of thumb: a table should not pertain to more than one entity type

Chapter 5 37 © Prentice Hall, 2002 Example – Figure 5.2b Question – Is this a relation? Answer – Yes: unique rows and no multivalued attributes Question – What’s the primary key? Answer – Composite: Emp_ID, Course_Title

Chapter 5 38 © Prentice Hall, 2002 Anomalies in this Table Insertion – can’t enter a new employee without having the employee take a class Deletion – if we remove employee 140, we lose information about the existence of a Tax Acc class Modification – giving a salary increase to employee 100 forces us to update multiple records Why do these anomalies exist? Because we’ve combined two themes (entity types) into one relation. This results in duplication, and an unnecessary dependency between the entities

Chapter 5 39 © Prentice Hall, 2002 Functional Dependencies and Keys Functional Dependency: The value of one attribute (the determinant) determines the value of another attribute Candidate Key: – A unique identifier. One of the candidate keys will become the primary key E.g. perhaps there is both credit card number and SS# in a table…in this case both are candidate keys – Each non-key field is functionally dependent on every candidate key

Chapter 5 40 © Prentice Hall, Steps in normalization

Chapter 5 41 © Prentice Hall, 2002 First Normal Form No multivalued attributes Every attribute value is atomic Fig. 5-2a is not in 1 st Normal Form (multivalued attributes)  it is not a relation Fig. 5-2b is in 1 st Normal form All relations are in 1 st Normal Form

Chapter 5 42 © Prentice Hall, 2002 Second Normal Form 1NF plus every non-key attribute is fully functionally dependent on the ENTIRE primary key – Every non-key attribute must be defined by the entire key, not by only part of the key – No partial functional dependencies Fig. 5-2b is NOT in 2 nd Normal Form (see fig 5-23b)

Chapter 5 43 © Prentice Hall, 2002 Fig 5.23(b) – Functional Dependencies in EMPLOYEE2 EmpIDCourseTitleDateCompletedSalaryDeptNameName Dependency on entire primary key Dependency on only part of the key EmpID, CourseTitle  DateCompleted EmpID  Name, DeptName, Salary Therefore, NOT in 2 nd Normal Form!!

Chapter 5 44 © Prentice Hall, 2002 Getting it into 2 nd Normal Form See p193 – decomposed into two separate relations EmpIDSalaryDeptNameNameCourseTitleDateCompletedEmpID Both are full functional dependencies

Chapter 5 45 © Prentice Hall, 2002 Third Normal Form 2NF PLUS no transitive dependencies (one attribute functionally determines a second, which functionally determines a third) Fig. 5-24, 5-25

Chapter 5 46 © Prentice Hall, 2002 Figure Relation with transitive dependency (a) SALES relation with simple data

Chapter 5 47 © Prentice Hall, 2002 Figure 5-24(b) Relation with transitive dependency CustID  Name CustID  Salesperson CustID  Region All this is OK (2 nd NF) BUT CustID  Salesperson  Region Transitive dependency (not 3 rd NF)

Chapter 5 48 © Prentice Hall, 2002 Figure Removing a transitive dependency (a) Decomposing the SALES relation

Chapter 5 49 © Prentice Hall, 2002 Figure 5.25(b) Relations in 3NF Now, there are no transitive dependencies… Both relations are in 3 rd NF CustID  Name CustID  Salesperson Salesperson  Region

Chapter 5 50 © Prentice Hall, 2002 Other Normal Forms (from Appendix B) Boyce-Codd NF – All determinants are candidate keys…there is no determinant that is not a unique identifier 4 th NF – No multivalued dependencies 5 th NF – No “lossless joins” Domain-key NF – The “ultimate” NF…perfect elimination of all possible anomalies