Chapter 18 Fuzzy Reasoning.

Slides:



Advertisements
Similar presentations
© Negnevitsky, Pearson Education, Lecture 4 Fuzzy expert systems: Fuzzy logic Introduction, or what is fuzzy thinking? Introduction, or what is.
Advertisements

Fuzzy Logic 11/6/2001. Agenda General Definition Applications Formal Definitions Operations Rules Fuzzy Air Conditioner Controller Structure.
Graphical Technique of Inference
Fuzzy Inference Systems
 Negnevitsky, Pearson Education, Lecture 5 Fuzzy expert systems: Fuzzy inference n Mamdani fuzzy inference n Sugeno fuzzy inference n Case study.
Fuzzy Expert System  An expert might say, “ Though the power transformer is slightly overloaded, I can keep this load for a while”.  Another expert.
AI – CS364 Fuzzy Logic Fuzzy Logic 3 03 rd October 2006 Dr Bogdan L. Vrusias
Lecture 4 Fuzzy expert systems: Fuzzy logic
Fuzzy Logic and its Application to Web Caching
Fuzzy Inference and Defuzzification
Chapter 14.7 Russell & Norvig. Fuzzy Sets  Rules of thumb frequently stated in “fuzzy” linguistic terms. John is tall. If someone is tall and well-built.
CS344 Artificial Intelligence Prof. Pushpak Bhattacharya Class on 6 Mar 2007.
Fuzzy Expert System Fuzzy Logic
Fuzzy Expert System. Basic Notions 1.Fuzzy Sets 2.Fuzzy representation in computer 3.Linguistic variables and hedges 4.Operations of fuzzy sets 5.Fuzzy.
Fuzzy Expert Systems. Lecture Outline What is fuzzy thinking? What is fuzzy thinking? Fuzzy sets Fuzzy sets Linguistic variables and hedges Linguistic.
Fuzzy Sets and Fuzzy Logic Chapter 12 M. Tim Jones See also
Final Exam: May 10 Thursday. If event E occurs, then the probability that event H will occur is p ( H | E ) IF E ( evidence ) is true THEN H ( hypothesis.
FUZZY SYSTEMS. Fuzzy Systems Fuzzy Sets – To quantify and reason about fuzzy or vague terms of natural language – Example: hot, cold temperature small,
Fuzzy Logic E. Fuzzy Inference Engine. “antecedent” “consequent”
Lecture 07 Fuzzy Reasoning
Fuzzy Expert System.
1 Chapter 18 Fuzzy Reasoning. 2 Chapter 18 Contents (1) l Bivalent and Multivalent Logics l Linguistic Variables l Fuzzy Sets l Membership Functions l.
WELCOME TO THE WORLD OF FUZZY SYSTEMS. DEFINITION Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept.
Fuzzy Logic Dave Saad CS498. Origin Proposed as a mathematical model similar to traditional set theory but with the possibility of partial set membership.
BEE4333 Intelligent Control
Rule-Based Fuzzy Model. In rule-based fuzzy systems, the relationships between variables are represented by means of fuzzy if–then rules of the following.
What are Neuro-Fuzzy Systems A neuro-fuzzy system is a fuzzy system that uses a learning algorithm derived from or inspired by neural network theory to.
FUZZY LOGIC Babu Appat. OVERVIEW What is Fuzzy Logic? Where did it begin? Fuzzy Logic vs. Neural Networks Fuzzy Logic in Control Systems Fuzzy Logic in.
9/3/2015Intelligent Systems and Soft Computing1 Lecture 4 Fuzzy expert systems: Fuzzy logic Introduction, or what is fuzzy thinking? Introduction, or what.
Fuzzy Sets Introduction/Overview Material for these slides obtained from: Modern Information Retrieval by Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
Fuzzy Rules 1965 paper: “Fuzzy Sets” (Lotfi Zadeh) Apply natural language terms to a formal system of mathematical logic
 Definition Definition  Bit of History Bit of History  Why Fuzzy Logic? Why Fuzzy Logic?  Applications Applications  Fuzzy Logic Operators Fuzzy.
Fuzzy Inference (Expert) System
1 Asst. Prof. Dr. Sukanya Pongsuparb Dr. Srisupa Palakvangsa Na Ayudhya Dr. Benjarath Pupacdi SCCS451 Artificial Intelligence Week 9.
Neural-Network-Based Fuzzy Logical Control and Decision System 主講人 虞台文.
Logical Systems and Knowledge Representation Fuzzy Logical Systems 1.
Lógica difusa  Bayesian updating and certainty theory are techniques for handling the uncertainty that arises, or is assumed to arise, from statistical.
Fuzzy Sets and Control. Fuzzy Logic The definition of Fuzzy logic is a form of multi-valued logic derived frommulti-valued logic fuzzy setfuzzy set theory.
Fuzzy Inference Systems. Fuzzy inference (reasoning) is the actual process of mapping from a given input to an output using fuzzy logic. The process involves.
PART 9 Fuzzy Systems 1. Fuzzy controllers 2. Fuzzy systems and NNs 3. Fuzzy neural networks 4. Fuzzy Automata 5. Fuzzy dynamic systems FUZZY SETS AND FUZZY.
“Principles of Soft Computing, 2 nd Edition” by S.N. Sivanandam & SN Deepa Copyright  2011 Wiley India Pvt. Ltd. All rights reserved. CHAPTER 12 FUZZY.
Fuzzy Inference and Reasoning
AI Fuzzy Systems. History, State of the Art, and Future Development Sde Seminal Paper “Fuzzy Logic” by Prof. Lotfi Zadeh, Faculty in Electrical.
Fuzzy Expert System n Introduction n Fuzzy sets n Linguistic variables and hedges n Operations of fuzzy sets n Fuzzy rules n Summary.
Chapter 19. Fuzzy Reasoning
Fuzzy Logic Artificial Intelligence Chapter 9. Outline Crisp Logic Fuzzy Logic Fuzzy Logic Applications Conclusion “traditional logic”: {true,false}
Lecture 4 Fuzzy expert systems: Fuzzy logic n Introduction, or what is fuzzy thinking? n Fuzzy sets n Linguistic variables and hedges n Operations of fuzzy.
Introduction to Fuzzy Logic and Fuzzy Systems
Artificial Intelligence CIS 342
Expert System Structure
Fuzzy Expert Systems (part 1) By: H.Nematzadeh
Introduction to Fuzzy Logic
Fuzzy Logic 11/6/2001.
Artificial Intelligence
Fuzzy Expert Systems (part 1) By: H.Nematzadeh
Fuzzy Logic and Fuzzy Sets
Fuzzy logic Introduction 3 Fuzzy Inference Aleksandar Rakić
Dr. Unnikrishnan P.C. Professor, EEE
Fuzzy System Structure
منطق فازی.
Dr. Unnikrishnan P.C. Professor, EEE
Intelligent Systems and Soft Computing
FUZZIFICATION AND DEFUZZIFICATION
Fuzzy Logic Colter McClure.
Dr. Unnikrishnan P.C. Professor, EEE
Fuzzy Inference Systems
© Negnevitsky, Pearson Education, Lecture 4 Fuzzy expert systems: Fuzzy logic Introduction, or what is fuzzy thinking? Introduction, or what is.
Fuzzy Logic KH Wong Fuzzy Logic v.9a.
Chapter 19. Fuzzy Reasoning
Presentation transcript:

Chapter 18 Fuzzy Reasoning

Chapter 18 Contents (1) Bivalent and Multivalent Logics Linguistic Variables Fuzzy Sets Membership Functions Fuzzy Set Operators Hedges

Chapter 18 Contents (2) Fuzzy Logic Fuzzy Rules Fuzzy Inference Fuzzy Expert Systems Neuro-Fuzzy Systems

Bivalent and Multivalent Logics Bivalent (Aristotelian) logic uses two logical values – true and false. Multivalent logics use many logical values – often in a range of real numbers from 0 to 1. Important to note the difference between multivalent logic and probability – P(A) = 0.5 means that A may be true or may be false – a logical value of 0.5 means both true and false at the same time.

Linguistic Variables Variables used in fuzzy systems to express qualities such as height, which can take values such as “tall”, “short” or “very tall”. These values define subsets of the universe of discourse.

Fuzzy Sets A crisp set is a set for which each value either is or is not contained in the set. For a fuzzy set, every value has a membership value, and so is a member to some extent. The membership value defines the extent to which a variable is a member of a fuzzy set. The membership value is from 0 (not at all a member of the set) to 1.

Membership Functions The following function defines the extent to which a value x is a member of fuzzy set B: This function would be stored in the computer as: B = {(0, 1), (2, 0)} This function could represent, for example, the extent to which a person can be considered a baby, based on their age.

Crisp Set Operators Not A – the complement of A, which contains the elements which are not contained in A. A  B – the intersection of A and B, which contains those elements which are contained in both A and B. A  B – the union of A and B which contains all the elements of A and all the elements of B. Fuzzy sets use the same operators, but the operators have different meanings.

Fuzzy Set Operators Fuzzy set operators can be defined by their membership functions M¬A(x) = 1 - MA(x) MA  B (x) = MIN (MA (x), MB (x)) MA  B (x) = MAX (MA (x), MB (x)) We can also define containment (subset operator): B  A iff x (MB (x)  MA (x))

Hedges A hedge is a qualifier such as “very”, “quite”, “somewhat” or “extremely”. When a hedge is applied to a fuzzy set it creates a new fuzzy set. Mathematic functions are usually used to define the effect of a hedge. For example, “Very” might be defined as: MVA (x) = (MA (x))2

Fuzzy Logic (1) A nonmonotonic logical system that applies to fuzzy variables. We use connectives defined as: A V B  MAX (A, B) A Λ B  MIN (A, B) ¬A  1 – A We can also define truth tables:

Fuzzy Inference (1) Inference is harder to manage. Since: A  B  ¬A V B Hence, we might define fuzzy inference as: A  B  MAX ((1 – A), B) This gives the unintuitive truth table shown on the right. This gives us 0.5  0 = 0.5, where we would expect 0.5  0 = 0

Fuzzy Inference (2) An alternative is Gödel implication, which is defined as: A  B  (A ≤ B) V B This gives a more intuitive truth table.

Fuzzy Inference (3) Mamdani inference derives a single crisp value by applying fuzzy rules to a set of crisp input values. Step 1: Fuzzify the inputs. Step 2: Apply the inputs to the antecedents of the fuzzy rules to obtain a set of fuzzy outputs. Step 3: Convert the fuzzy outputs to a single crisp value using defuzzification.

Fuzzy Rules A fuzzy rule takes the following form: IF A op x then B = y op is an operator such as >, < or =. For example: IF temperature > 50 then fan speed = fast IF height = tall then trouser length = long IF study time = short then grades = poor

Fuzzy Expert Systems A fuzzy expert system is built by creating a set of fuzzy rules, and applying fuzzy inference. In many ways this is more appropriate than standard expert systems since expert knowledge is not usually black and white but has elements of grey. The first stage in building a fuzzy expert system is choosing suitable linguistic variables. Rules are then generated based on the expert’s knowledge, using the linguistic variables.

Neuro-Fuzzy Systems A fuzzy neural network is usually a feed-forward network with five layers: Input layer – receives crisp inputs Fuzzy input membership functions Fuzzy rules Fuzzy output membership functions Output layer – outputs crisp values