第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
基本知识和几何要素的投影 模块一: 字体练习 第一章 制图的基本知识与基本技能 题目提示返回.
位置相关查询处理 研究背景及意义 移动计算、无线通信以及定位技术的快速发展,使 得位置相关的查询处理及基于位置的信息服务技术 已经成为一个热点研究领域 。 大量的应用领域 ( 如地理信息系统、智能导航、交 通管制、天气预报、军事、移动电子商务等 ) 均迫 切需要有效地查询这些数据对象。
第三章 随机向量. §3.1 随机向量的分布 一、随机向量及其分布函数 n 维随机向量 :书 P72 定义 3.1 联合分布函数: 书 P72 定义 3.2 我们主要讨论二维情形 1 、二维随机变量 设 X 和 Y 是定义在 (Ω,P) 上的两个随机变量, 则称 ( X , Y )为二维随机变量或二维随机向量。
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
4 第四章 矩阵 学时:  18 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 矩阵的运算,可逆矩阵,初等矩阵及其性质和意义, 分块矩阵。  教学目的:  1 .使学生理解和掌握矩阵等价的相关理论  2 .能熟练地进行矩阵的各种运算.
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
嵌入式操作系统 陈香兰 Fall 系统调用 10/27/09 嵌入式 OS 3/12 系统调用的意义  操作系统为用户态进程与硬件设备进行交互提供 了一组接口 —— 系统调用  把用户从底层的硬件编程中解放出来  极大的提高了系统的安全性  使用户程序具有可移植性.
2.2 结构的抗力 抗力及其不定因素 材料强度的标准值 材料强度的设计值.
5 第五章 二次型 学时: 10 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 二次型的矩阵表示、标准型、唯一性、正定二次型。  教学目的:  1 、了解二次型的概念,二次型的矩阵表示。  2 、会化二次型为标准型,规范性。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
1 第二章 误差和分析数据的处理. 2 ● 内容提要 1. 误差及其产生原因 2. 准确度与精密度 3. 有效数字及其计算规则 4. 分析数据的处理.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十八讲 ) 离散数学. 例 设 S 是一个非空集合, ρ ( s )是 S 的幂集合。 不难证明 :(ρ(S),∩, ∪,ˉ, ,S) 是一个布尔代数。 其中: A∩B 表示 A , B 的交集; A ∪ B 表示 A ,
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
第二部分 行政法律关系主体 第一节 行政主体 一、行政主体 (一)行政主体的概念 cc (二)行政主体资格含义及构成要件 CASE1CASE1\CASE2CASE2 (三)行政主体的职权和职责 1 、行政职权的概念及内容 2 、行政职权的特点 3 、行政职责.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
6 第一章 线性空间 学时: 16 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容:集合、映射的概念;线性空间的定义与简单性质、维 数、基与坐标、过渡矩阵的概念;基变换与坐标变换;线性子空 间、子空间的交与和、子空间的直和;线性空间的同构等概念。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十五讲 ) 离散数学 模 格 定义 设( L , ≤ ) 是一个格,对任意 a , b , c ∈ L , 如果 a≤b ,都有 a  ( b×c ) = b× ( a  c ) 则称( L , ≤ )为模格。
信息利用与学术论文写作 Library of Jiangsu University, Zhenjiang Sha Zhenjiang
第二章 贝叶斯决策理论 3学时.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
§2.2 一元线性回归模型的参数估计 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计( OLS ) 三、参数估计的最大或然法 (ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
1/108 随机信号分析. 2/116 第 2 章 随机信号 3/ 定义与基本特性 2.2 典型信号举例 2.3 一般特性与基本运算 2.4 多维高斯分布与高斯信号 2.5 独立信号 目 录.
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
最 小 公 倍 数最 小 公 倍 数 最 小 公 倍 数最 小 公 倍 数. 例题 顺次写出 4 的几个倍数和 6 的几个倍数,它们 公有的倍数是哪几个?其中最小的是多少? 4 的倍数有 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , … 6 的倍数有 :
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
第二十四讲 相位延时系统 相位超前系统 全通系统. 一、最小与最大相位延时系统、最小 与最大相位超前系统 LSI 系统的系统函数: 频率响应:
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
卫生学(第 7 版) · 第十二章 直线相关与回归 1 直线相关与回归 第十一章. 卫生学(第 7 版) · 第十二章 直线相关与回归 2 主要内容 直线相关 直线回归 直线相关与回归的区别与联系 等级相关.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
名探柯南在侦查一个特大盗窃集团过程 中,获得藏有宝物的密码箱,密码究竟 是什么呢?请看信息: ABCDEF( 每个字 母表示一个数字 ) A :是所有自然数的因数 B :既有因数 5 ,又是 5 的倍数 C :既是偶数又是质数 D :既是奇数又是合数 EF :是 2 、 3 、 5 的最小公倍数.
1 物体转动惯量的测量 南昌大学理学院
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
第三章 正弦交流电路.
7 生产费用在完工产品与在产 品之间分配的核算. 2 第七章 生产费用在完工产品与在产品之 间的分配  知识点 :  理解在产品的概念  掌握生产费用在完工产品与在产品之间的分 配.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
§2 离散型随机变量及其分布律 1/23 用同一支枪对目标进行射击,直到击中目标为止, 则射击次数 是离散型 r.v. 用同一支枪对目标进行射击,直到击中目标为止, 则射击次数 是离散型 r.v.离散型 r.v 非离散型 r.v 散型随机变量 将一枚硬币连抛三次,观察正、反面出现的情况, 定义 将一枚硬币连抛三次,观察正、反面出现的情况,
个体 精子 卵细胞 父亲 受精卵 母亲 人类生活史 问题:人类产生配子(精、卵 细胞)是不是有丝分裂?
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
§5.6 利用希尔伯特 (Hilbert) 变换 研究系统的约束特性 希尔伯特变换的引入 可实现系统的网络函数与希尔伯特变换.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
一、弧微分 规定:   单调增函数 如图,   弧微分公式 二、曲率及其计算公式 曲率是描述曲线局部性质(弯曲程度)的量. ) ) 弧段弯曲程度 越大转角越大 转角相同弧段越 短弯曲程度越大 1 、曲率的定义 )
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
高 频 电 子 线 路高 频 电 子 线 路 主讲 元辉 5.5 晶体振荡器 石英晶体振荡器的频率稳定度 1 、石英晶体谐振器具有很高的标准性。 、石英晶体谐振器与有源器件的接入系数通常近似 如下 受外界不稳定因素的影响少。 3 、石英晶体谐振器具有非常高的值。 维持振荡频率稳定不变的能力极强。
Presentation transcript:

第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用 、 等表示.

注: 1° 随机变量 是基本事件的函数, 具体问题里具体规定. 2° 对于不同的基本事件, 的取值亦要不同. 3° 每一基本事件都可用随机变量的取值来表示.如 , 则 . 4° 当 时,事件 与 互不相容. 5 ° 表示 取小于等于 的每一个值所对应的基本事件的和事件 二、随机变量的分布函数

定义 2 设 是一个随机变量,对任意实数 ,令 称 为随机变量 的分布函数. 分布函数是定义在 上的函数.具有如下性质: 1° ≤ ≤1 且 , . 2° 是单调不减函数. 3 ° 是右连续的,即 . 4 ° 对任意 ,有

第二节 离散型随机变量及其概率分布 定义 3 设 E 是一个试验, X 为 E 中的随机变量,如果 X 只取有限个 数值或可数无穷多个数值,则称 X 为离散型随机变量. 一、离散型随机变量及其分布律 定义 4 分布律: P{X = x k } = p k, k = 1, 2, …, 即

… … …… 例如抛硬币的试验 1/2 10 掷骰子的试验 1/

分布律的性质: 1° ≥0 , =1 , 2 , … ; 2° . 例 1 某人射击命中率为 ,不断地独立射击目标,直到命中为止, 求发射子弹数 的分布律 ( 概率分布 ) . 解 可取值为 1 , 2 , … , , … , 表示事件 “ 前 次不中,第 次击中 ” ,则 . ,因此

1 2 3 … … … … 例 2 设 1/2 1 0 ,求 为分布函数 . 解 · · · 。

例 3, /6 1/6 1/6 求分布函数 . 解 ······ · 。 。 。 。 。 。 对离散型随机变量 , .

二、几种常用的离散型随机变量及其概率分布 1 . (0-1) 分布 若随机变量 只取 0 与 1 两个值,其概率分布为 或写成 则称 服从参数为 的( 0-1 )分布或两点分布. 分布函数 . X 0 1 P 1-p p

2 .二项分布 如果随机变量 的取值为 0 , 1 , 2 , … , , 其分布律为 , 0 , 1 , 2 , … , ; . 则称 服从参数为 , 的二项分布,证作 ~ ( 或 ) . 当 =1 时,二项分布 就是 (0-1) 分布. 在 重贝努利概型中,事件 发生的次数 就服从 , .

3 .泊松分布 如果随机变量 可能取值为 0 , 1 , 2 , … , , … ,并且 , 0 , 1 , 2 , … 其中 为常数,则称 服从参数为 的泊松分布,记作 ~ . 显然 , 0 , 1 , 2 , … . 附表 2 为泊松分布 表.

泊松定理 设 为一常数, 为任意正 整数, ,则对于任一固定的非负整数 , 有 . 证 由 ,有

由泊松定理可知,当 很大, 很小时有近似公式 : 即二项分布近似于泊松分布,而泊松分布有表可查. 例 4 一部电话交换台每分钟接到的呼叫次数服从参数为 4 的泊松分布, 求: ( 1 )每分钟恰有 6 次呼叫的概率; ( 2 )每分钟的呼叫次数大于 5 的概率.

解 以 表示每分钟呼叫的次数,则 . , 0 , 1 , 2 , … ( 1 ) . (2)(2) .

例 5 某人进行射击,每次命中率为 0.02 ,独 立射击 400 次,求至少击中两次的概率 解 (400 , 0.02) ,,400 所求概率为 .

第三节 连续型随机变量及其概率密度 一、连续型随机变量的概率密度及其性质 定义 4 设随机变量 的分布函数为 ,如果存在一个 非负函数 ,使对于任意实数 ,有 , 则称 为连续型随机变量,其中 称为 的概率密度. 性质: 1° ≥0 . 2° .

3° 连续. 4° . 5° . 6° . 例 1 设 的概率密度为 ( 1 )求 ;( 2 )求 ;( 3 ) .

解 ( 1 )由 ,有 . ( 2 ) . ( 3 ) · · 例 2 设连续型随机变量 的概率密度为 ( 1 )求 ,( 2 )求 ;( 3 )分布函数 .

解 ( 1 )由 , 而 . 有 . ( 2 ) . ( 3 )当时 , , 当 ≤ 时, .

当 ≥2 时, . 所以 . 二、几种常见的连续型随机变量及其概率密度 (一)均匀分布 若连续型随机变量 具有概率密度

则称 在区间 上服从均匀分布.其分布函数为 · · · · ··

对于任意 ,若 ,则有 . 这说明 取值落在 内任一子区间 内的概率, 只依赖于子区间的长度 ,而与子区间位置无关. 例 3 设连续型随机变量 的分布函数为 ( 1 )求密度 ; ( 2 )若 .求 .

解 ( 1 ) 在 (-3, 9) 上服从均匀分布. ( 2 ) . (二)指数分布 若连续型随机变量 的概率密度为 其中 为常数,则称 服从参数为 的指数分布.其分布函数为

。 · 例 4 已知某种电子管的寿命 ( 单位小时 ) 服从指数分布,其概率密度为 求这种电子管能使用 1000 小时以上的概 率.

解 . 第四节 正态分布 一、正态分布的定义与性质 若连续型随机变量 的概率密度为 其中 为常数,则称 服从参数为 的正态分布,记 作 .其分布函数为

· 性质 关于直线 对称,并在 处取最大值 . 实际问题中,许多随机变量都服从正态分布,如测量长度的误差, 机器包装货物的重量等.

正态分布是本课程的重点内容. 二、标准正态分布 设 ,如果 , ,则称 服从标 准正态分布.记作 . 的概率密度为 分布函数为

· . 性质 若 ,则 有表可查. .

例 5 设 . . 三、一般正态分布与标准正态分布的关系 设 分布函数为 ,则 , .

例 6 设 ,求:( 1 ) ; ( 2 ) ;( 3 ) ; ( 4 ) . 解 , . (1) (1).

(2)(2) (3)(3) (4)(4)

例 7 设 ,求 . 解 四、标准正态分布的上 分位点 设 ,对于给定的 .若点 满 足 ,则称点 为标准正态分布的上 分位点. .

当 时,由 , 查表得

第五节 随机变量的函数的分布 定义 设有函数 , 与 是两个随 机变量,如果当随机变量 取值 时,随机变量 取值为 ,则称随机变量 是随机变量 的函数,记作 . 本节举例说明由随机变量 的分布,求 的分布的方 法. 例 1 设离散型随机变量 的分布律为

求 和 的分布律. 解

例 2 设 的概率密度为 求 的概率密度. 解 先求 的分布函数 . 于是得到 的概率密度

例 3 已知 ,求 的概率密度.

解 即 .

例 4 设 ,求 的概率密度. 解 由于 的取值非负,故当 时, , . 当时 ,

,求 的分布 律. 练习: 1 .设

2 .设 X ~ N ( μ, σ 2 ) ,求 Y = a X + b 的密度.

3 .设 X ~ N ( 0, 1 ) ,求 Y = e X 的密度.

Y ~ N ( aμ, + b, a 2 σ 2 )