Gene Prediction: Statistical Approaches Lecture 22.

Slides:



Advertisements
Similar presentations
An Introduction to Bioinformatics Finding genes in prokaryotes.
Advertisements

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Gene Prediction: Statistical Approaches.
Genomics: READING genome sequences ASSEMBLY of the sequence ANNOTATION of the sequence carry out dideoxy sequencing connect seqs. to make whole chromosomes.
Ab initio gene prediction Genome 559, Winter 2011.
Finding Eukaryotic Open reading frames.
Gene Prediction Methods G P S Raghava. Prokaryotic gene structure ORF (open reading frame) Start codon Stop codon TATA box ATGACAGATTACAGATTACAGATTACAGGATAG.
CISC667, F05, Lec18, Liao1 CISC 467/667 Intro to Bioinformatics (Fall 2005) Gene Prediction and Regulation.
Gene prediction and HMM Computational Genomics 2005/6 Lecture 9b Slides taken from (and rapidly mixed) Larry Hunter, Tom Madej, William Stafford Noble,
Methods of identification and localization of the DNA coding sequences Jacek Leluk Interdisciplinary Centre for Mathematical and Computational Modelling,
Gene Finding. Finding Genes Prokaryotes –Genome under 10Mb –>85% of sequence codes for proteins Eukaryotes –Large Genomes (up to 10Gb) –1-3% coding for.
BIOS816/VBMS818 Lecture 7 – Gene Prediction Guoqing Lu Office: E115 Beadle Center Tel: (402) Website:
Gene Identification Lab
ECE 501 Introduction to BME
Computational Biology, Part 4 Protein Coding Regions Robert F. Murphy Copyright  All rights reserved.
Introduction to Molecular Biology. G-C and A-T pairing.
Lecture 12 Splicing and gene prediction in eukaryotes
Biological Motivation Gene Finding in Eukaryotic Genomes
Dynamic Programming (cont’d) CS 466 Saurabh Sinha.
Finding prokaryotic genes and non intronic eukaryotic genes
FROM GENE TO PROTEIN: TRANSCRIPTION & RNA PROCESSING Chapter 17.
3. Genome Annotation: Gene Prediction. Gene: A sequence of nucleotides coding for protein Gene Prediction Problem: Determine the beginning and end positions.
Gene Structure and Identification
An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Gene Prediction: Statistical Approaches.
Making of Proteins: Transcription and Translation
Bio 1010 Dr. Bonnie A. Bain. DNA Structure and Function Part 2.
Gene Prediction in silico Nita Parekh BIRC, IIIT, Hyderabad.
Gene prediction. Gene Prediction: Computational Challenge aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatg ctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgc.
More on translation. How DNA codes proteins The primary structure of each protein (the sequence of amino acids in the polypeptide chains that make up.
Genes: Regulation and Structure Many slides from various sources, including S. Batzoglou,
Regular Expression ^ beginning of string $ end of string. any character except newline * match 0 or more times + match 1 or more times ? match 0 or 1 times;
Genome Organization & Evolution. Chromosomes Genes are always in genomic structures (chromosomes) – never ‘free floating’ Bacterial genomes are circular.
DNA sequencing. Dideoxy analogs of normal nucleotide triphosphates (ddNTP) cause premature termination of a growing chain of nucleotides. ACAGTCGATTG ACAddG.
Gene finding and gene structure prediction M. Fatih BÜYÜKAKÇALI Computational Bioinformatics 2012.
Lecture 10, CS5671 Neural Network Applications Problems Input transformation Network Architectures Assessing Performance.
Chapter 13. The Central Dogma of Biology: RNA Structure: 1. It is a nucleic acid. 2. It is made of monomers called nucleotides 3. There are two differences.
Gene Prediction: Statistical Methods (Lecture for CS498-CXZ Algorithms in Bioinformatics) Sept. 20, 2005 ChengXiang Zhai Department of Computer Science.
Genetica per Scienze Naturali a.a prof S. Presciuttini 1. ELONGATION Shortly after initiating transcription, the sigma factor dissociates from the.
Pattern Matching Rhys Price Jones Anne R. Haake. What is pattern matching? Pattern matching is the procedure of scanning a nucleic acid or protein sequence.
Gene Prediction: Similarity-Based Methods (Lecture for CS498-CXZ Algorithms in Bioinformatics) Sept. 15, 2005 ChengXiang Zhai Department of Computer Science.
From Genomes to Genes Rui Alves.
Genome Annotation Haixu Tang School of Informatics.
Gene, Proteins, and Genetic Code. Protein Synthesis in a Cell.
Eukaryotic Gene Structure. 2 Terminology Genome – entire genetic material of an individual Transcriptome – set of transcribed sequences Proteome – set.
Genes and Genomes. Genome On Line Database (GOLD) 243 Published complete genomes 536 Prokaryotic ongoing genomes 434 Eukaryotic ongoing genomes December.
DNA in the Cell Stored in Number of Chromosomes (24 in Human Genome) Tightly coiled threads of DNA and Associated Proteins: Chromatin 3 billion bp in Human.
PROTEIN SYNTHESIS TRANSCRIPTION AND TRANSLATION. TRANSLATING THE GENETIC CODE ■GENES: CODED DNA INSTRUCTIONS THAT CONTROL THE PRODUCTION OF PROTEINS WITHIN.
An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Gene Prediction: Statistical Approaches.
Finding genes in the genome
Gene Structure Prediction (Gene Finding) I519 Introduction to Bioinformatics, 2012.
CFE Higher Biology DNA and the Genome Transcription.
BIOINFORMATICS Ayesha M. Khan Spring 2013 Lec-8.
RNA, Transcription, and the Genetic Code. RNA = ribonucleic acid -Nucleic acid similar to DNA but with several differences DNARNA Number of strands21.
Dynamic Programming (cont’d) CS 466 Saurabh Sinha.
Ch. 11: DNA Replication, Transcription, & Translation Mrs. Geist Biology, Fall Swansboro High School.
Biological Motivation Gene Finding in Eukaryotic Genomes Rhys Price Jones Anne R. Haake.
1 Gene Finding. 2 “The Central Dogma” TranscriptionTranslation RNA Protein.
Bacterial infection by lytic virus
ORF Calling.
bacteria and eukaryotes
Bacterial infection by lytic virus
CONTINUITY AND CHANGE.
Ab initio gene prediction
Recitation 7 2/4/09 PSSMs+Gene finding
Outline What is an amino acid / protein
More on translation.
Introduction to Bioinformatics II
Gene Prediction: Statistical Approaches
Central Dogma Central Dogma categorized by: DNA Replication Transcription Translation From that, we find the flow of.
The Toy Exon Finder.
Presentation transcript:

Gene Prediction: Statistical Approaches Lecture 22

Outline Codons Discovery of Split Genes Exons and Introns Splicing Open Reading Frames Codon Usage Splicing Signals TestCode

Gene: A sequence of nucleotides coding for protein Gene Prediction Problem: Determine the beginning and end positions of genes in a genome Gene Prediction: Computational Challenge

aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgct aatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggc tatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgc taatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaa tgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgc taatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgc aagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatg acaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgcta agctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcg gctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcat gcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatg ctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggct atgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaat gcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctg ggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctat gcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

Gene Prediction: Computational Challenge aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgct aatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggc tatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgc taatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaa tgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgc taatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgc aagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatg acaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgcta agctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcg gctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcat gcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatg ctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggct atgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaat gcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctg ggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctat gcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

Gene Prediction: Computational Challenge aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgct aatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggc tatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgc taatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaa tgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgc taatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgc aagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatg acaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgcta agctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcg gctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcat gcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatg ctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggct atgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaat gcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctg ggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctat gcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg Gene!

Protein RNA DNA transcription translation CCTGAGCCAACTATTGATGAA PEPTIDEPEPTIDE CCUGAGCCAACUAUUGAUGAA Central Dogma: DNA -> RNA -> Protein

Exons and Introns In eukaryotes, the gene is a combination of coding segments (exons) that are interrupted by non-coding segments (introns) This makes computational gene prediction in eukaryotes even more difficult Prokaryotes don’t have introns - Genes in prokaryotes are continuous

Central Dogma and Splicing exon1 exon2exon3 intron1intron2 transcription translation splicing exon = coding intron = non-coding

Gene Structure

Newspaper written in unknown language –Certain pages contain encoded message, say 99 letters on page 7, 30 on page 12 and 63 on page 15. How do you recognize the message? You could probably distinguish between the ads and the story (ads contain the “$” sign often) Statistics-based approach to Gene Prediction tries to make similar distinctions between exons and introns. Gene Prediction Analogy

Noting the differing frequencies of symbols (e.g. ‘%’, ‘.’, ‘-’) and numerical symbols could you distinguish between a story and the stock report in a foreign newspaper? Statistical Approach: Metaphor in Unknown Language

Statistical: coding segments (exons) have typical sequences on either end and use different subwords than non-coding segments (introns). Similarity-based: many human genes are similar to genes in mice, chicken, or even bacteria. Therefore, already known mouse, chicken, and bacterial genes may help to find human genes. Two Approaches to Gene Prediction

If you could compare the day’s news in English, side-by-side to the same news in a foreign language, some similarities may become apparent Similarity-Based Approach: Metaphor in Different Languages

UAA, UAG and UGA correspond to 3 Stop codons that (together with Start codon ATG) delineate Open Reading Frames Genetic Code and Stop Codons

Six Frames in a DNA Sequence stop codons – TAA, TAG, TGA start codons - ATG GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC

In the following string THE SLY FOX AND THE SHY DOG Delete 1, 2, and 3 nucleotifes after the first ‘S’: THE SYF OXA NDT HES HYD OG THE SFO XAN DTH ESH YDO G THE SOX AND THE SHY DOG Which of the above makes the most sense? The Sly Fox

Detect potential coding regions by looking at ORFs –A genome of length n is comprised of (n/3) codons –Stop codons break genome into segments between consecutive Stop codons –The subsegments of these that start from the Start codon (ATG) are ORFs ORFs in different frames may overlap Genomic Sequence Open reading frame ATGTGA Open Reading Frames (ORFs)

Long open reading frames may be a gene –At random, we should expect one stop codon every (64/3) ~= 21 codons –However, genes are usually much longer than this A basic approach is to scan for ORFs whose length exceeds certain threshold –This is naïve because some genes (e.g. some neural and immune system genes) are relatively short Long vs.Short ORFs

Testing ORFs: Codon Usage Create a 64-element hash table and count the frequencies of codons in an ORF Amino acids typically have more than one codon, but in nature certain codons are more in use Uneven use of the codons may characterize a real gene This compensate for pitfalls of the ORF length test

Codon Usage in Human Genome

AA codon /1000 frac Ser TCG Ser TCA Ser TCT Ser TCC Ser AGT Ser AGC Pro CCG Pro CCA Pro CCT Pro CCC AA codon /1000 frac Leu CTG Leu CTA Leu CTT Leu CTC Ala GCG Ala GCA Ala GCT Ala GCC Gln CAG Gln CAA Codon Usage in Mouse Genome

Codon Usage and Likelihood Ratio An ORF is more “believable” than another if it has more “likely” codons Do sliding window calculations to find ORFs that have the “likely” codon usage Allows for higher precision in identifying true ORFs; much better than merely testing for length. However, average vertebrate exon length is 130 nucleotides, which is often too small to produce reliable peaks in the likelihood ratio Further improvement: in-frame hexamer count (uses frequencies of pairs of consecutive codons)

Gene Prediction and Motifs Upstream regions of genes often contain motifs that can be used for gene prediction -10 STOP ATG TATACT Pribnow Box TTCCAAGGAGG Ribosomal binding site Transcription start site

Promoter Structure in Prokaryotes (E.Coli) Transcription starts at offset 0. Pribnow Box (-10) Gilbert Box (-30) Ribosomal Binding Site (+10)

Ribosomal Binding Site

Splicing Signals Try to recognize location of splicing signals at exon-intron junctions –This has yielded a weakly conserved donor splice site and acceptor splice site Profiles for sites are still weak, and lends the problem to the Hidden Markov Model (HMM) approaches, which capture the statistical dependencies between sites

Splicing Signals Exons are interspersed with introns and typically flanked by GT and AG

Splice site detection 5’ 3’ Donor site Position %

Consensus splice sites Donor: 7.9 bits Acceptor: 9.4 bits

Promoters Promoters are DNA segments upstream of transcripts that initiate transcription Promoter attracts RNA Polymerase to the transcription start site 5’ Promoter 3’

Donor and Acceptor Sites: GT and AG dinucleotides The beginning and end of exons are signaled by donor and acceptor sites that usually have GT and AC dinucleotides Detecting these sites is difficult, because GT and AC appear very often exon 1exon 2 GTAC Acceptor Site Donor Site

( Donor: 7.9 bits Acceptor: 9.4 bits (Stephens & Schneider, 1996) Donor and Acceptor Sites: Motif Logos

TestCode Statistical test described by James Fickett in 1982: tendency for nucleotides in coding regions to be repeated with periodicity of 3 –Judges randomness instead of codon frequency –Finds “putative” coding regions, not introns, exons, or splice sites TestCode finds ORFs based on compositional bias with a periodicity of three

TestCode Statistics Define a window size no less than 200 bp, slide the window the sequence down 3 bases. In each window: –Calculate for each base {A, T, G, C} max (n 3k+1, n 3k+2, n 3k ) / min ( n 3k+1, n 3k+2, n 3k ) Use these values to obtain a probability from a lookup table (which was a previously defined and determined experimentally with known coding and noncoding sequences

TestCode Statistics (cont’d) Probabilities can be classified as indicative of " coding” or “noncoding” regions, or “no opinion” when it is unclear what level of randomization tolerance a sequence carries The resulting sequence of probabilities can be plotted

TestCode Sample Output Coding No opinion Non-coding

Popular Gene Prediction Algorithms GENSCAN: uses Hidden Markov Models (HMMs) TWINSCAN –Uses both HMM and similarity (e.g., between human and mouse genomes)