ECE 232 L13. Control.1 ©UCB, DAP’ 97 ECE 232 Hardware Organization and Design Lecture 13 Control Design www.ecs.umass.edu/ece/labs/vlsicad/ece232/spr2002/index_232.html.

Slides:



Advertisements
Similar presentations
Datorteknik DatapathControl bild 1 Designing a Single Cycle Datapath & Datapath Control.
Advertisements

CS152 Lec9.1 CS152 Computer Architecture and Engineering Lecture 9 Designing Single Cycle Control.
John Lazzaro (
EECC550 - Shaaban #1 Lec # 4 Summer Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target ISA.
361 datapath Computer Architecture Lecture 8: Designing a Single Cycle Datapath.
CS61C L19 CPU Design : Designing a Single-Cycle CPU (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L26 Single Cycle CPU Datapath II (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L20 Single-Cycle CPU Control (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS152 / Kubiatowicz Lec8.1 9/26/01©UCB Fall 2001 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control September 26, 2001.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2007 © UCB 3.6 TB DVDs? Maybe!  Researchers at Harvard have found a way to use.
Savio Chau Single Cycle Controller Design Last Time: Discussed the Designing of a Single Cycle Datapath Control Datapath Memory Processor (CPU) Input Output.
Processor II CPSC 321 Andreas Klappenecker. Midterm 1 Tuesday, October 5 Thursday, October 7 Advantage: less material Disadvantage: less preparation time.
Ceg3420 control.1 ©UCB, DAP’ 97 CEG3420 Computer Design Lecture 9.2: Designing Single Cycle Control.
EECC550 - Shaaban #1 Lec # 4 Winter CPU Organization Datapath Design: –Capabilities & performance characteristics of principal Functional.
CS 61C L35 Single Cycle CPU Control II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L34 Single Cycle CPU Control I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Lecturer PSOE Dan Garcia
Microprocessor Design
CS61C L25 Single Cycle CPU Datapath (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
EECC250 - Shaaban #1 lec #22 Winter The Von-Neumann Computer Model Partitioning of the computing engine into components: –Central Processing.
CS152 / Kubiatowicz Lec8.1 2/22/99©UCB Spring 1999 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control Feb 22, 1999 John.
CS61C L25 CPU Design : Designing a Single-Cycle CPU (1) Garcia, Fall 2006 © UCB T-Mobile’s Wi-Fi / Cell phone  T-mobile just announced a new phone that.
CS 61C L17 Control (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #17: CPU Design II – Control
CS151B Computer Systems Architecture Winter 2002 TuTh 2-4pm BH Instructor: Prof. Jason Cong Lecture 8 Designing a Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 25 CPU design (of a single-cycle CPU) Intel is prototyping circuits that.
CS 61C L29 Single Cycle CPU Control II (1) Garcia, Fall 2004 © UCB Andrew Schultz inst.eecs.berkeley.edu/~cs61c-tb inst.eecs.berkeley.edu/~cs61c CS61C.
EECC550 - Shaaban #1 Lec # 4 Winter Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target.
CS 61C discussion 11 (1) Jaein Jeong 2002 Draw the data path: ADD or SUB Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction.
EEM 486: Computer Architecture Lecture 3 Designing a Single Cycle Datapath.
CS61C L27 Single-Cycle CPU Control (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 27 Single-cycle.
CS 61C L16 Datapath (1) A Carle, Summer 2004 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #16 – Datapath Andy.
CS61C L20 Single Cycle Datapath, Control (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
361 control Computer Architecture Lecture 9: Designing Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures.
ECE 232 L12.Datapath.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 12 Datapath.
ELEN 350 Single Cycle Datapath Adapted from the lecture notes of John Kubiatowicz(UCB) and Hank Walker (TAMU)
CS 61C L28 Single Cycle CPU Control I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L27 Single Cycle CPU Control (1) Garcia, Fall 2006 © UCB Wireless High Definition?  Several companies will be working on a “WirelessHD” standard,
CS3350B Computer Architecture Winter 2015 Lecture 5.6: Single-Cycle CPU: Datapath Control (Part 1) Marc Moreno Maza [Adapted.
Instructor: Sagar Karandikar
Computer Organization CS224 Fall 2012 Lesson 26. Summary of Control Signals addsuborilwswbeqj RegDst ALUSrc MemtoReg RegWrite MemWrite Branch Jump ExtOp.
EEM 486: Computer Architecture Designing Single Cycle Control.
Designing a Single Cycle Datapath In this lecture, slides from lectures 3, 8 and 9 from the course Computer Architecture ECE 201 by Professor Mike Schulte.
EEM 486: Computer Architecture Designing a Single Cycle Datapath.
Computer Architecture and Design – ECEN 350 Part 6 [Some slides adapted from A. Sprintson, M. Irwin, D. Paterson and others]
CPE 442 single-cycle datapath.1 Intro. To Computer Architecture CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath.
CS3350B Computer Architecture Winter 2015 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza [Adapted.
Computer Organization CS224 Chapter 4 Part a The Processor Spring 2011 With thanks to M.J. Irwin, T. Fountain, D. Patterson, and J. Hennessy for some lecture.
Designing a Single- Cycle Processor 國立清華大學資訊工程學系 黃婷婷教授.
CS4100: 計算機結構 Designing a Single-Cycle Processor 國立清華大學資訊工程學系 一零零學年度第二學期.
Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Processor: Datapath & Control.
Csci 136 Computer Architecture II –Single-Cycle Datapath Xiuzhen Cheng
EEM 486: Computer Architecture Lecture 3 Designing Single Cycle Control.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single-Cycle CPU Datapath & Control Part 2 Instructors: Krste Asanovic & Vladimir Stojanovic.
CS141-L4-1Tarun Soni, Summer’03 Single Cycle CPU  Previously: built and ALU.  Today: Actually build a CPU Questions on CS140 ? Computer Arithmetic ?
Single Cycle Controller Design
EI209 Chapter 4B.1Haojin Zhu, SJTU 2015 EI 209 Computer Organization Fall 2015 Chapter 4B: The Processor, Control and Multi-cycle Datapath [Adapted from.
CS 110 Computer Architecture Lecture 11: Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger School of Information.
(Chapter 5: Hennessy and Patterson) Winter Quarter 1998 Chris Myers
(Chapter 5: Hennessy and Patterson) Winter Quarter 1998 Chris Myers
Lecturer PSOE Dan Garcia
EEL Computer Architecture Single-Cycle Control Logic
CS152 Computer Architecture and Engineering Lecture 8 Designing a Single Cycle Datapath Start: X:40.
COMS 361 Computer Organization
Instructors: Randy H. Katz David A. Patterson
COMS 361 Computer Organization
What You Will Learn In Next Few Sets of Lectures
Processor: Datapath and Control
Presentation transcript:

ECE 232 L13. Control.1 ©UCB, DAP’ 97 ECE 232 Hardware Organization and Design Lecture 13 Control Design

ECE 232 L13. Control.2 ©UCB, DAP’ 97 Recap: Summary from last time °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °MIPS makes it easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates °Single cycle datapath => CPI=1, CCT => long °Next time: implementing control

ECE 232 L13. Control.3 ©UCB, DAP’ 97 Recap: The MIPS Instruction Formats °All MIPS instructions are 32 bits long. The three instruction formats: R-type I-type J-type °The different fields are: op: operation of the instruction rs, rt, rd: the source and destination registers specifier shamt: shift amount funct: selects the variant of the operation in the “op” field address / immediate: address offset or immediate value target address: target address of the jump instruction optarget address bits26 bits oprsrtrdshamtfunct bits 5 bits oprsrt immediate bits16 bits5 bits

ECE 232 L13. Control.4 ©UCB, DAP’ 97 Recap: The MIPS Subset °ADD and subtract add rd, rs, rt sub rd, rs, rt °OR Imm: ori rt, rs, imm16 °LOAD and STORE lw rt, rs, imm16 sw rt, rs, imm16 °BRANCH: beq rs, rt, imm16 oprsrtrdshamtfunct bits 5 bits oprsrtimmediate bits16 bits5 bits

ECE 232 L13. Control.5 ©UCB, DAP’ 97 Recap: A Single Cycle Datapath °We have everything except control signals (underline) Today’s lecture will show you how to generate the control signals

ECE 232 L13. Control.6 ©UCB, DAP’ 97 The Big Picture: Where are We Now? °The Five Classic Components of a Computer °Today’s Topic: Designing the Control for the Single Cycle Datapath Control Datapath Memory Processor Input Output

ECE 232 L13. Control.7 ©UCB, DAP’ 97 Outline of Today’s Lecture °Recap and Introduction °Control for Register-Register & Or Immediate instructions °Control signals for Load, Store, Branch, & Jump °Building a local controller: ALU Control °The main controller °Summary

ECE 232 L13. Control.8 ©UCB, DAP’ 97 RTL: The Add Instruction °addrd, rs, rt mem[PC]Fetch the instruction from memory R[rd] <- R[rs] + R[rt]The actual operation PC <- PC + 4Calculate the next instruction’s address oprsrtrdshamtfunct bits 5 bits

ECE 232 L13. Control.9 ©UCB, DAP’ 97 Instruction Fetch Unit at the Beginning of Add °Fetch the instruction from Instruction memory: Instruction <- mem[PC] This is the same for all instructions PC Ext Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_sel imm16 Instruction

ECE 232 L13. Control.10 ©UCB, DAP’ 97 The Single Cycle Datapath during Add 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 1 Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction °R[rd] <- R[rs] + R[rt] Imm16RdRsRt oprsrtrdshamtfunct nPC_sel= +4

ECE 232 L13. Control.11 ©UCB, DAP’ 97 Instruction Fetch Unit at the End of Add °PC <- PC + 4 This is the same for all instructions except: Branch and Jump Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_sel imm16 Instruction

ECE 232 L13. Control.12 ©UCB, DAP’ 97 The Single Cycle Datapath during Or Immediate °R[rt] <- R[rs] or ZeroExt[Imm16] oprsrtimmediate ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel =

ECE 232 L13. Control.13 ©UCB, DAP’ 97 The Single Cycle Datapath during Or Immediate 32 ALUctr = Or Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 0 Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction °R[rt] <- R[rs] or ZeroExt[Imm16] Imm16RdRsRt oprsrtimmediate nPC_sel= +4

ECE 232 L13. Control.14 ©UCB, DAP’ 97 The Single Cycle Datapath during Load 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = 1 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt °R[rt] <- Data Memory {R[rs] + SignExt[imm16]} oprsrtimmediate nPC_sel= +4

ECE 232 L13. Control.15 ©UCB, DAP’ 97 The Single Cycle Datapath during Store °Data Memory {R[rs] + SignExt[imm16]} <- R[rt] oprsrtimmediate ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel =

ECE 232 L13. Control.16 ©UCB, DAP’ 97 The Single Cycle Datapath during Store 32 ALUctr = Add Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 1 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt °Data Memory {R[rs] + SignExt[imm16]} <- R[rt] oprsrtimmediate nPC_sel= +4

ECE 232 L13. Control.17 ©UCB, DAP’ 97 The Single Cycle Datapath during Branch 32 ALUctr = Subtract Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt °if (R[rs] - R[rt] == 0) then Zero <- 1 ; else Zero <- 0 oprsrtimmediate nPC_sel= “Br”

ECE 232 L13. Control.18 ©UCB, DAP’ 97 Instruction Fetch Unit at the End of Branch °if (Zero == 1) then PC = PC SignExt[imm16]*4 ; else PC = PC + 4 oprsrtimmediate Adder PC Clk 00 Mux 4 nPC_sel imm16 Adr Inst Memory Instruction

ECE 232 L13. Control.19 ©UCB, DAP’ 97 Step 4: Given Datapath: RTL -> Control ALUctr RegDst ALUSrc ExtOp MemtoRegMemWr Equal Instruction Imm16RdRsRt nPC_sel Adr Inst Memory DATA PATH Control Op Fun RegWr

ECE 232 L13. Control.20 ©UCB, DAP’ 97 A Summary of Control Signals inst Register Transfer ADDR[rd] <– R[rs] + R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUBR[rd] <– R[rs] – R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4” LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4” STOREMEM[ R[rs] + sign_ext(Imm16)] <– R[rs];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” BEQif ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 nPC_sel = “Br”, ALUctr = “sub”

ECE 232 L13. Control.21 ©UCB, DAP’ 97 A Summary of the Control Signals addsuborilwswbeqjump RegDst ALUSrc MemtoReg RegWrite MemWrite nPCsel Jump ExtOp ALUctr x Add x Subtract Or Add x 1 x x 0 x x Subtract x x x x xxx optarget address oprsrtrdshamtfunct oprsrt immediate R-type I-type J-type add, sub ori, lw, sw, beq jump func op Appendix A See We Don’t Care :-)

ECE 232 L13. Control.22 ©UCB, DAP’ 97 The Concept of Local Decoding Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 ALU

ECE 232 L13. Control.23 ©UCB, DAP’ 97 The Encoding of ALUop °In this exercise, ALUop has to be 2 bits wide to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: -(2) Or, (3) Add, and (4) Subtract °To implement the full MIPS ISA, ALUop has to be 3 bits to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: -(2) Or, (3) Add, (4) Subtract, and (5) And (Example: andi) Main Control op 6 ALU Control (Local) funcN 6 ALUop ALUctr 3 R-typeorilwswbeqjump ALUop (Symbolic)“R-type”OrAdd Subtract xxx ALUop xxx

ECE 232 L13. Control.24 ©UCB, DAP’ 97 The Decoding of the “func” Field R-typeorilwswbeqjump ALUop (Symbolic)“R-type”OrAdd Subtract xxx ALUop xxx Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 oprsrtrdshamtfunct R-type funct Instruction Operation add subtract and or set-on-less-than ALUctr ALU Operation Add Subtract And Or Set-on-less-than Recall ALU Homework (also P. 286 text): ALUctr ALU

ECE 232 L13. Control.25 ©UCB, DAP’ 97 The Truth Table for ALUctr R-typeorilwswbeq ALUop (Symbolic) “R-type”OrAdd Subtract ALUop ALUopfunc bit 000xxxx ALUctrALU Operation Add010 bit 0x1xxxxSubtract110 01xxxxxOr001 1xx0000Add010 1xx0010Subtract110 1xx0100And000 1xx0101Or001 1xx1010Set on <111 funct Instruction Op add subtract and or set-on-less-than

ECE 232 L13. Control.26 ©UCB, DAP’ 97 The Logic Equation for ALUctr °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func ALUopfunc bit ALUctr 0x1xxxx1 1xx xx10101 This makes func a don’t care

ECE 232 L13. Control.27 ©UCB, DAP’ 97 The Logic Equation for ALUctr ALUopfunc bit 000xxxx1 ALUctr 0x1xxxx1 1xx xx xx10101 °ALUctr = !ALUop & !ALUop + ALUop & !func & !func

ECE 232 L13. Control.28 ©UCB, DAP’ 97 The Logic Equation for ALUctr ALUopfunc bit ALUctr 01xxxxx1 1xx xx10101 °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func & func + ALUop & func & !func & func & !func

ECE 232 L13. Control.29 ©UCB, DAP’ 97 The ALU Control Block ALU Control (Local) func 3 6 ALUop ALUctr 3 °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func °ALUctr = !ALUop & !ALUop + ALUop & !func & !func °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func & func + ALUop & func & !func & func & !func

ECE 232 L13. Control.30 ©UCB, DAP’ 97 Step 5: Logic for each control signal °nPC_sel <= if (OP == BEQ) then EQUAL else 0 °ALUsrc <=if (OP == “Rtype”) then “regB” else “immed” °ALUctr<= if (OP == “Rtype”) then funct elseif (OP == ORi) then “OR” elseif (OP == BEQ) then “sub” else “add” °ExtOp <= _____________ °MemWr<= _____________ °MemtoReg<= _____________ °RegWr:<=_____________ °RegDst:<= _____________

ECE 232 L13. Control.31 ©UCB, DAP’ 97 Step 5: Logic for each control signal °nPC_sel <= if (OP == BEQ) then EQUAL else 0 °ALUsrc <=if (OP == “Rtype”) then “regB” else “immed” °ALUctr<= if (OP == “Rtype”) then funct elseif (OP == ORi) then “OR” elseif (OP == BEQ) then “sub” else “add” °ExtOp <= if (OP == ORi) then “zero” else “sign” °MemWr<= (OP == Store) °MemtoReg<= (OP == Load) °RegWr:<= if ((OP == Store) || (OP == BEQ)) then 0 else 1 °RegDst:<= if ((OP == Load) || (OP == ORi)) then 0 else 1

ECE 232 L13. Control.32 ©UCB, DAP’ 97 The “Truth Table” for the Main Control Main Control op 6 ALU Control (Local) func 3 6 ALUop ALUctr 3RegDst ALUSrc :

ECE 232 L13. Control.33 ©UCB, DAP’ 97 The “Truth Table” for RegWrite R-typeorilwswbeqjump RegWrite op °RegWrite = R-type + ori + lw = !op & !op & !op & !op & !op & !op (R-type) + !op & !op & op & op & !op & op (ori) + op & !op & !op & !op & op & op (lw) RegWrite

ECE 232 L13. Control.34 ©UCB, DAP’ 97 PLA Implementation of the Main Control RegWrite ALUSrc MemtoReg MemWrite Branch Jump RegDst ExtOp ALUop

ECE 232 L13. Control.35 ©UCB, DAP’ 97 A Real MIPS Datapath (CNS T0)

ECE 232 L13. Control.36 ©UCB, DAP’ 97 Putting it All Together: A Single Cycle Processor Instr

ECE 232 L13. Control.37 ©UCB, DAP’ 97 Worst Case Timing (Load)

ECE 232 L13. Control.38 ©UCB, DAP’ 97 Drawback of this Single Cycle Processor °Long cycle time : Cycle time must be long enough for the load instruction: PC’s Clock -to-Q + Instruction Memory Access Time + Register File Access Time + ALU Delay (address calculation) + Data Memory Access Time + Register File Setup Time + Clock Skew °Cycle time for load is much longer than needed for all other instructions

ECE 232 L13. Control.39 ©UCB, DAP’ 97 °Single cycle datapath => CPI=1, CCT => long °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °Control is the hard part °MIPS makes control easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates Summary Control Datapath Memory Processor Input Output