1) Go over HW #1 solutions (Due today)

Slides:



Advertisements
Similar presentations
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 8 = Finish chapter 6 Agenda:
Advertisements

Association Rule Mining
Recap: Mining association rules from large datasets
Association Analysis (Data Engineering). Type of attributes in assoc. analysis Association rule mining assumes the input data consists of binary attributes.
Association Rules Spring Data Mining: What is it?  Two definitions:  The first one, classic and well-known, says that data mining is the nontrivial.
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
Association Rule Mining. 2 The Task Two ways of defining the task General –Input: A collection of instances –Output: rules to predict the values of any.
1 BUS 297D: Data Mining Professor David Mease Lecture 8 Agenda: 1) Reminder about HW #4 (due Thursday, 10/15) 2) Lecture over Chapter 10 3) Discuss final.
MIS2502: Data Analytics Association Rule Mining. Uses What products are bought together? Amazon’s recommendation engine Telephone calling patterns Association.
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Association Analysis. Association Rule Mining: Definition Given a set of records each of which contain some number of items from a given collection; –Produce.
Data Mining Techniques So Far: Cluster analysis K-means Classification Decision Trees J48 (C4.5) Rule-based classification JRIP (RIPPER) Logistic Regression.
Data Mining Association Analysis: Basic Concepts and Algorithms Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Organization “Association Analysis”
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Association Analysis: Basic Concepts and Algorithms.
Data Mining Association Analysis: Basic Concepts and Algorithms
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
Eick, Tan, Steinbach, Kumar: Association Analysis Part1 Organization “Association Analysis” 1. What is Association Analysis? 2. Association Rules 3. The.
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 9 = Review for midterm exam.
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 7 = Finish chapter 3 and.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining By Tan, Steinbach, Kumar Lecture.
Modul 7: Association Analysis. 2 Association Rule Mining  Given a set of transactions, find rules that will predict the occurrence of an item based on.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Association Rules. CS583, Bing Liu, UIC 2 Association rule mining Proposed by Agrawal et al in Initially used for Market Basket Analysis to find.
ASSOCIATION RULE DISCOVERY (MARKET BASKET-ANALYSIS) MIS2502 Data Analytics Adapted from Tan, Steinbach, and Kumar (2004). Introduction to Data Mining.
Eick, Tan, Steinbach, Kumar: Association Analysis Part1 Organization “Association Analysis” 1. What is Association Analysis? 2. Association Rules 3. The.
Supermarket shelf management – Market-basket model:  Goal: Identify items that are bought together by sufficiently many customers  Approach: Process.
Data Mining Association Analysis Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/
Data & Text Mining1 Introduction to Association Analysis Zhangxi Lin ISQS 3358 Texas Tech University.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
EXAM REVIEW MIS2502 Data Analytics. Exam What Tool to Use? Evaluating Decision Trees Association Rules Clustering.
CSE4334/5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai.
1 What is Association Analysis: l Association analysis uses a set of transactions to discover rules that indicate the likely occurrence of an item based.
ASSOCIATION RULES (MARKET BASKET-ANALYSIS) MIS2502 Data Analytics Adapted from Tan, Steinbach, and Kumar (2004). Introduction to Data Mining.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Association Analysis This lecture node is modified based on Lecture Notes for.
CS 345: Topics in Data Warehousing Thursday, November 18, 2004.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Elective-I Examination Scheme- In semester Assessment: 30 End semester Assessment :70 Text Books: Data Mining Concepts and Techniques- Micheline Kamber.
1 Data Mining Lecture 6: Association Analysis. 2 Association Rule Mining l Given a set of transactions, find rules that will predict the occurrence of.
MIS2502: Data Analytics Association Rule Mining David Schuff
Introduction to Data Mining Mining Association Rules Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
DATA MINING: ASSOCIATION ANALYSIS (2) Instructor: Dr. Chun Yu School of Statistics Jiangxi University of Finance and Economics Fall 2015.
MIS2502: Data Analytics Association Rule Mining Jeremy Shafer
CS 405G: Introduction to Database Systems. 9/29/20162 Review What Is Data Mining? Data mining (knowledge discovery from data) Extraction of interesting.
Stats 202: Statistical Aspects of Data Mining Professor Rajan Patel
Statistics 202: Statistical Aspects of Data Mining
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Frequent Pattern Mining
William Norris Professor and Head, Department of Computer Science
COMP 5331: Knowledge Discovery and Data Mining
Data Mining Association Analysis: Basic Concepts and Algorithms
Association Rule Mining
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Association Analysis: Basic Concepts and Algorithms
MIS2502: Data Analytics Association Rule Mining
MIS2502: Data Analytics Association Rule Mining
Mining Association Rules in Large Databases
Association Analysis: Basic Concepts
Presentation transcript:

1) Go over HW #1 solutions (Due today) BUS 297D: Data Mining Professor David Mease Lecture 4 Agenda: 1) Go over HW #1 solutions (Due today) 2) Assign HW #2 (Due Thurs 9/17) 3) Lecture over Chapter 6 4) Discuss Midterm Exam

Homework 1 Homework 1 is at http://www.cob.sjsu.edu/mease_d/bus297D/homework1.html It is due Thursday, September 10 during class It is work 70 points It must be printed out using a computer and turned in during the class meeting time. Anything handwritten on the homework will not be counted. Late homeworks will not be accepted.

Homework 2 Homework 2 is at http://www.cob.sjsu.edu/mease_d/bus297D/homework2.html It is due Thursday, September 17 during class It is work 30 points It must be printed out using a computer and turned in during the class meeting time. Anything handwritten on the homework will not be counted. Late homeworks will not be accepted.

Introduction to Data Mining Chapter 6: Association Analysis by Tan, Steinbach, Kumar Chapter 6: Association Analysis

What is Association Analysis: Association analysis uses a set of transactions to discover rules that indicate the likely occurrence of an item based on the occurrences of other items in the transaction Examples: {Diaper}  {Beer}, {Milk, Bread}  {Eggs,Coke} {Beer, Bread}  {Milk} Implication means co-occurrence, not causality!

Definitions: Itemset A collection of one or more items Example: {Milk, Bread, Diaper} k-itemset = An itemset that contains k items Support count () Frequency of occurrence of an itemset E.g. ({Milk, Bread,Diaper}) = 2 Support Fraction of transactions that contain an itemset E.g. s({Milk, Bread, Diaper}) = 2/5 Frequent Itemset An itemset whose support is greater than or equal to a minsup threshold

Another Definition: Association Rule An implication expression of the form X  Y, where X and Y are itemsets Example: {Milk, Diaper}  {Beer}

Even More Definitions: Association Rule Evaluation Metrics Support (s) =Fraction of transactions that contain both X and Y Confidence (c) =Measures how often items in Y appear in transactions that contain X Example:

In class exercise #26: Compute the support for itemsets {a}, {b, d}, and {a,b,d} by treating each transaction ID as a market basket.

In class exercise #27: Use the results in the previous problem to compute the confidence for the association rules {b, d} → {a} and {a} → {b, d}. State what these values mean in plain English.

In class exercise #28: Compute the support for itemsets {a}, {b, d}, and {a,b,d} by treating each customer ID as a market basket.

In class exercise #29: Use the results in the previous problem to compute the confidence for the association rules {b, d} → {a} and {a} → {b, d}. State what these values mean in plain English.

In class exercise #30: The data www.stats202.com/more_stats202_logs.txt contains access logs from May 7, 2007 to July 1, 2007. Treating each row as a "market basket" find the support and confidence for the rule Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)→ 74.6.19.105

An Association Rule Mining Task: Given a set of transactions T, find all rules having both - support ≥ minsup threshold - confidence ≥ minconf threshold Brute-force approach: - List all possible association rules - Compute the support and confidence for each rule - Prune rules that fail the minsup and minconf thresholds - Problem: this is computationally prohibitive!

The Support and Confidence Requirements can be Decoupled All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer} Rules originating from the same itemset have identical support but can have different confidence Thus, we may decouple the support and confidence requirements {Milk,Diaper}  {Beer} (s=0.4, c=0.67) {Milk,Beer}  {Diaper} (s=0.4, c=1.0) {Diaper,Beer}  {Milk} (s=0.4, c=0.67) {Beer}  {Milk,Diaper} (s=0.4, c=0.67) {Diaper}  {Milk,Beer} (s=0.4, c=0.5) {Milk}  {Diaper,Beer} (s=0.4, c=0.5)

Two Step Approach: 1) Frequent Itemset Generation = Generate all itemsets whose support ≥ minsup 2) Rule Generation = Generate high confidence (confidence ≥ minconf ) rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset Note: Frequent itemset generation is still computationally expensive and your book discusses algorithms that can be used

In class exercise #31: Use the two step approach to generate all rules having support ≥ .4 and confidence ≥ .6 for the transactions below.

Drawback of Confidence Association Rule: Tea  Coffee Confidence(Tea  Coffee) = P(Coffee|Tea) = 0.75 Coffee Tea 15 5 20 75 80 90 10 100

Drawback of Confidence Association Rule: Tea  Coffee Confidence(Tea  Coffee) = P(Coffee|Tea) = 0.75 but support(Coffee) = P(Coffee) = 0.9 Although confidence is high, rule is misleading confidence(Tea  Coffee) = P(Coffee|Tea) = 0.9375 Coffee Tea 15 5 20 75 80 90 10 100

Other Proposed Metrics:

Simpson’s “Paradox” (page 384) Occurs when a 3rd (possibly hidden) variable causes the observed relationship between a pair of variables to disappear or reverse directions Example: My friend and I play a basketball game and each shoot 20 shots. Who is the better shooter?

Simpson’s “Paradox” (page 384) Occurs when a 3rd (possibly hidden) variable causes the observed relationship between a pair of variables to disappear or reverse directions Example: My friend and I play a basketball game and each shoot 20 shots. Who is the better shooter? But, who is the better shooter if you control for the distance of the shot? Who would you rather have on your team?

Another example of Simpson’s “Paradox” A search engine labels web pages as good and bad. A researcher is interested in studying the relationship between the duration of time a user spends on the web page (long/short) and the good/bad attribute.

Another example of Simpson’s “Paradox” A search engine labels web pages as good and bad. A researcher is interested in studying the relationship between the duration of time a user spends on the web page (long/short) and the good/bad attribute. It is possible that this relationship reverses direction when you control for the type of query (adult/non-adult). Which relationship is more relevant?

Midterm Exam: The midterm exam will be Thursday 9/17 You are allowed one 8.5 x 11 inch sheet (front and back) containing notes No books or computers are allowed, but please bring a hand held calculator The exam will cover the material from the first 4 lectures and the first two homeworks (Chapters 1, 2, 3 and 6)

Sample Midterm Question #1: What is the definition of data mining used in your textbook? A) the process of automatically discovering useful information in large data repositories B) the computer-assisted process of digging through and analyzing enormous sets of data and then extracting the meaning of the data C) an analytic process designed to explore data in search of consistent patterns and/or systematic relationships between variables, and then to validate the findings by applying the detected patterns to new subsets of data

Sample Midterm Question #2: If height is measured as short, medium or tall then it is what kind of attribute? A) Nominal B) Ordinal C) Interval D) Ratio

Sample Midterm Question #3: If my data frame in R is called “data”, which of the following will give me the third column? A) data[2,] B) data[3,] C) data[,2] D) data[,3] E) data(2,) F) data(3,) G) data(,2) H) data(,3)

Sample Midterm Question #4: If I have 100 values in my data and I add 5.0 to all of the values, then how will this change the standard deviation? A) it will not change B) it will become larger than the median C) it will become smaller than the median D) it will increase by 0.5 E) it will increase by 5 F) it will increase by some about, but we do not have enough information to determine how much G) it may increase or may stay the same

Sample Midterm Question #5: What is the R command to change the default directory which we used in class? A) chdir() B) ls() C) ls-a() D) cd() E) cd-a() F) setwd() G) go()

Sample Midterm Question #6: We often need to add noise to the points in a scatter plot in what situation? A) when we are uncertain of our values B) when both attributes are nominal C) when both attributes are discrete D) when neither attribute is ratio E) when neither attribute is nominal F) when we sample to reduce the number of points

Sample Midterm Question #7: A histogram using points and lines instead of bars is called what? A) bar chart B) pie chart C) polygon D) pareto diagram E) ogive

Sample Midterm Question #8: If the mean is larger than the median then this might be an indication that the data is what? A) discrete B) continuous C) filled with a lot of missing values D) observational E) experimental F) right-skewed G) left-skewed

Sample Midterm Question #9: Compute the confidence for the association rule {b, d} → {a} by treating each row as a market basket. Also, state what this value means in plain English.